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CHAPTER I:  Introduction 

Malignant peripheral nerve sheath tumor (MPNST) is a rare form of cancer that 

originates from Schwann cells associated with the peripheral nerves.  MPNST accounts 

for 5-10% of all soft tissue sarcomas (Strauss et al. 2001), which may occur sporadically 

or in association with Neurofibromatosis Type I (NF1).  Up to half of MPNST cases are 

diagnosed in people with NF1 (King et al. 2000), and NF1 patients have an 8-13% chance 

of developing MPNSTs (Anghileri et al. 2006).  NF1 is an autosomal dominant hereditary 

disorder due to loss of function in one parental copy of the neurofibromin (Nf1) gene, 

which predisposes individuals to a variety of disorders including MPNSTs as well as 

musculoskeletal abnormalities, developmental and cognitive disorders, and other cancer 

subtypes.  Nf1 is a tumor suppressor gene, which encodes for a RAS-GTPase activating 

protein (GAP) related domain (GRD) that negatively regulates Ras signaling by 

accelerating the hydrolysis of the active GTP-bound RAS (Xu et al. 1990).  Neurofibromin 

deficiency results in constitutively active Ras signaling, which plays a central role in 

development and maintenance of NF1-related tumors.  

MPNSTs are bulky, complex, debilitating tumors with grave prognosis.  Mortality 

associated with MPNSTs is primarily due to its aggressive invasiveness and motility. 

Surgery is the primary treatment option for MPNSTs; however its success is limited by 

tumor infiltration, resulting in a high relapse rate.  Due to the size and location of MPNSTs, 

surgery is often performed with wide margins, leaving behind cancer cells needing 

additional chemotherapy.  Based on the crucial role of NF1 RAS-GRD in development of 

MPNSTs, therapies have been targeted towards the RAS-driven oncogenic pathways; 

however these therapeutic strategies have met with limited success. 
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The NF1-mediated regulation of Ras pathway is controlled by RAS-GRD (330 

amino acids), which comprises a small portion of the NF1 protein that contains 2818 

amino acids.  The function of other NF1 domains is not very clear, and represents an 

understudied aspect of NF1-related pathologies.  Interestingly, various single nonsense 

and missense mutations in the Nf1 gene outside the GRD sequence can lead to NF1 

disease manifestation in patients (Messiaen & Wimmer 2008).  Another study reported 

that induced expression of Nf1 RAS-GRD does not rescue the lethality associated with 

Nf1(-/-) mouse models (Ismat et al. 2006), suggesting that NF1 regulates vital mechanisms 

of development and tumorigenesis, independently of RAS-GRD.  This project addresses 

the need to understand the functionality of NF1 in cancer cellular processes, independent 

of RAS-GRD, which can be employed as a therapeutic strategy in NF1-related MPNSTs. 

Our lab conducted a systematic gene expression profiling study using MPNST cell 

lines with variable NF1 statuses to identify signaling cascades associated with NF1 

malignancy, but independent of RAS-MEK1/2 signaling, to identify novel druggable 

targets for MPNSTs.  In doing so, we have identified the bone morphogenetic protein 2, 

BMP2-SMAD1/5/8 signaling pathway, independent of the RAS-MEK1/2 regulation, as a 

therapeutic target in MPNSTs (Sun et al. 2013).  The functional significance of targeting 

BMP2-SMAD1/5/8 signaling is demonstrated by the reversal of invasiveness and cellular 

motility in MPNST cell lines by inhibition of BMP2 (Sun et al. 2013).  Gene expression 

data mined by our lab from NF1 patient tissue samples independently established that 

increased expression of BMP2 is associated with the degree of malignancy in Schwann 

cell-related tumors in NF1 patients (Miller et al. 2009).   
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In this study, I present the case for targeting of BMP2-SMAD1/5/8 signaling based 

on its role in motility and invasiveness in combination with current therapeutic strategies 

in MPNSTs.  To design a rational targeted therapeutic approach, identification of the 

regulatory mechanisms leading to over-expression of BMP2 upon NF1 deficiency is 

warranted.  To provide a comprehensive understanding of targeting BMP2-SMAD1/5/8 

signaling in MPNSTs, we assessed the feasibility of targeting BMP2 at the protein level, 

and identified genetic targets mediating the increase in BMP2 signaling upon NF1 

deficiency.  The aim of this project is to utilize gene expression profiling studies to identify 

a novel druggable target, understand the regulatory mechanisms, and therapeutic utility 

of multiple targeted pathways in NF1-related MPNSTs. 

1.1  Hereditary Cancers 

Cancer is a disease of underlying genomic alterations.  Mutations within the 

genetic material in tumor cells drive the initiation, progression, and evolution of cancers.  

Loss of function mutations result in deficient or complete loss of activity in proteins such 

as tumor suppressors, whereas gain of function mutations in oncogenes enhance protein 

activity.  Accumulation of mutations in genes that maintain genomic stability is a hallmark 

of cancer.  These genomic aberrations are mostly sporadic in nature, however some 

mutations can be inherited from parents to offspring.   

Approximately 5-10% of cancers are caused by hereditary mutations (Garber & 

Offit 2005).  The mechanism of genetic predisposition to cancer was described in the 

early 1970s, based on studies of hereditary retinoblastoma families, which led to the 

generation of the Knudson “two-hit” model of tumorigenesis (Knudson 1971).  The 

Knudson model proposes that patients with hereditary susceptibility to cancers inherit 
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only one functional copy of the gene.  Due to genomic instability or loss of heterozygosity, 

the affected patients lose the last functional copy of the gene resulting in absence of 

protein function (Knudson 1971), and ultimately leading to tumorigenesis.  It is important 

to note that the Knudson model is specific to tumor suppressor genes (TSGs).   Loss-of-

function mutations are characteristic of TSGs, which require mutations in both alleles of 

a gene prior to manifestation of an effect.  In contrast, gain-of function mutations occur in 

oncogenes where mutations in a single parental allele of a gene can result in novel or 

enhanced protein functionality. 

Mutations within TSGs comprise the greatest proportion of inherited susceptibility 

to cancer (Hodgson 2008).  These mutations often occur in pathways that regulate 

essential cellular processes including chromosomal stability (e.g. p53), DNA damage 

repair (e.g. BRCA1, MLH1) and cell cycle (e.g. Rb, p53) (Vineis et al. 2010).  In the case 

of germline p53 (Li-Fraumeni syndrome) and Rb1 (Retinoblastoma) mutation carriers, 

malignancy is the defining characteristic of the hereditary syndrome.  In other cases, such 

as APC (Familial Adenomatous Polyposis) and Nf1 (Neurofibromatosis Type I) mutation 

carriers, afflicted individuals are not just at an increased risk for malignancy, but also 

present with non-cancerous features and congenital anomalies.  

1.2  Neurofibromatosis Type I (NF1) 

Neurofibromatosis Type I, formerly known as von Recklinghausen disease, is one 

of the most common heritable genetic conditions of the nervous system with a birth 

incidence of 1 in 2500-3000 individuals (Friedman 1999).  The NF1 disease is caused by 

mutations in the neurofibromin I (Nf1) gene.  Nf1 is a TSG due to its well-characterized 

RAS-GRD, which negatively regulates RAS activity by accelerating the hydrolysis of the 
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activated GTP-bound RAS (Xu et al. 1990).  Therefore loss of NF1 activity leads to 

activation of the wild-type Ras proto-oncogenes.  NF1 is an autosomal dominant condition 

with nearly complete penetrance of the associated phenotypes (Friedman 1999).  

However, these traits are extremely variable in expression.  Heterozygosity of the Nf1 

gene leads to a wide variety of clinical pathologies including café-au-lait macules, axillary 

freckling, Lisch nodules, cognitive disorders, bone deformities such as osseous lesions, 

and neurofibromas. (Brems et al. 2009).  Presence of two or more of these 

aforementioned benign clinical features encompasses the diagnostic criteria for the NF1 

disease (Hirbe & Gutmann 2014).  NF1 patients are also susceptible to various forms of 

cancers, development of which requires a complete loss of Nf1 gene function (Roma 

2001).  NF1 patients are at risk for developing glioma of the optic pathway (15-20%), 

MPNSTs (8-13%), gastrointestinal stromal tumors (4-25%), rhabdomyosarcomas (1.4-

6%), leukemia, breast cancers, and other brain tumors (Hirbe & Gutmann 2014).  Cancer 

subtypes among NF1 patients exhibit severe pathology with poor prognosis.  NF1 patients 

have a five-fold increased chance of breast cancer occurring at a younger age (Sharif et 

al. 2007; Wang et al. 2012), and the mortality rate for breast cancer in NF1 patients is 

higher compared to the general population (Evans et al. 2011).  NF1 patients also have 

a five-fold increased chance of developing glioblastomas with poor prognosis (Hatori et 

al. 2006; Gutmann et al. 2002).   

Café au lait spots and multiple neurofibromas are distinguishing features of NF1 

patients, as over 90% of NF1 patients display either one or both of these symptoms 

(Compston 1994a; Huson 1989a).  Neurofibromas mostly occur during adulthood in NF1 

patients, however early onset of optic gliomas, plexiform neurofibromas, cognitive 
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defects, and other neurologic syndromes have been reported in many cases (Watson 

1967).  Neurofibromas are complex benign peripheral nerve sheath tumors composed of 

Schwann cells, fibroblasts, perineural cells, and mast cells (Rutkowski et al. 2000).  

Cutaneous neurofibromas grow along the nerves or underneath the skin and are largely 

asymptomatic (Gerber et al. 2009).  Approximately 56-57% of all NF1 patients develop 

plexiform neurofibromas which are extensive, larger neurofibromas that can occur 

anywhere within the body (Kluwe et al. 1999; Mautner et al. 2008).  Plexiform 

neurofibromas are thought to be congenital lesions that manifest themselves during 

childhood in NF1 patients  (Nguyen et al. 2011).  Most importantly, plexiform 

neurofibromas are painful lesions that can transform into the most aggressive cancer 

subtype seen in NF1 patients called malignant peripheral nerve sheath tumors. 

1.3  Malignant Peripheral Nerve Sheath Tumors (MPNSTs) 

MPNST is a spindle cell soft-tissue sarcoma, which generally occurs on peripheral 

nerves in the trunk, extremities and head and neck regions (Nikumbh et al. 2013).  

MPNST is a rare form of cancer with a prevalence of 0.001% in the general population 

(Ducatman 1986a).  The lifetime risk for NF1 patients to develop MPNSTs is estimated 

at 8-13% (Anghileri et al. 2006), with a recent study documenting the risk at precisely 

11.7% in the NF1 population (Evans et al. 2012).  In a Kaplan-Meier analysis, the five-

year survival rate from diagnosis for MPNST patients with hereditary NF1 disease was 

21%, compared to 42% for sporadic cases of MPNSTs (Evans et al. 2002).  The majority 

of hereditary MPNST cases occur in the adult population between 20-40 years of age 

(Ducatman 1986b; Widemann 2009), however, MPNST is one of the more frequent soft-
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tissue sarcomas seen in the pediatric population with a higher incidence among the 10-

20 years age group (Bates et al. 2014).  

Approximately 50% of MPNST cases occur in patients with NF1 disease (King et 

al. 2000), and 41% of the remaining sporadic MPNST cases present with sporadic 

mutations in the Nf1 gene (Bottillo et al. 2009).  Interestingly, a retrospective study of the 

northwest regional genetic registry in England reported a significant correlation between 

p53 mutation carriers (Li Fraumeni Syndrome patients) and an increased risk of MPNST 

development (Anghileri et al. 2006).  This is surprising because mutations of p53 are not 

commonly found in NF1-related MPNSTs.  In one study, only 11% of MPNST cases 

presented with mutations in p53; however, presence of these mutations was significantly 

associated with high tumor grades (Holtkamp et al. 2007). 

1.4  Role of NF1 in MPNSTs 

Mutations of the Nf1 gene play a critical role in MPNST development given that the 

majority (~70.5%) of MPNST cases harbor either germline or sporadic mutations in the 

Nf1 gene (Bottillo et al. 2009).  Various types of mutations including nonsense mutations, 

missense mutations, intronic mutations, deletions and insertions occur in the Nf1 gene, 

however no clear correlation between the specific type of mutations and their effects 

(genotype-phenotype relationships) have been identified (Shen et al. 1996).  80% of Nf1 

mutations in hereditary NF1 patients are frameshift or nonsense mutations, which result 

in a non-functional truncated protein (Jett & Friedman 2010).  Microdeletions of the Nf1 

gene, specifically 1.5Mb deletions, confer increased risk of MPNST development in NF1 

patients (De Raedt et al. 2003).  Additionally, carriers of Nf1 microdeletions present with 

severe cognitive dysfunction, early onset neurofibromas, and poor prognosis for MPNSTs 
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(Shen et al. 1996; De Raedt et al. 2003).  The Nf1 locus is the most highly mutable locus 

in the genome with a rate of mutation 100-fold greater than the average mutation rate 

(Shen et al. 1996).  This is further supported by the fact that approximately half of NF1 

individuals present with de novo mutations in the Nf1 gene not found in their parents 

(Hirbe & Gutmann 2014).   

1.5  Role of microenvironment in NF1-related malignancies 

In-vivo disease modeling of Nf1-related tumors in genetically engineered mice has 

emphasized the role of Nf1-heterozygous tumor microenvironment and other molecular 

pathways (Munchhof et al. 2006).  Complete deletion of the Nf1 gene in mice results in 

embryonic lethality, whereas Nf1(+/-) mice do not develop neurofibromas or optic gliomas 

classically associated with NF1 disease (Jacks et al. 1994).  Heterozygosity of the 

microenvironment of Nf1(-/-) Schwann cells or other cells of cancer origin has been 

identified as a requirement for development of optic gliomas as well as plexiform 

neurofibromas in mice (Bajenaru et al. 2002; Zhu et al. 2002).  The in vivo neurofibroma 

model required tissue-specific deletion of Nf1 in Schwann cells using the Cre/Lox 

transgene system, leaving intact the heterozygous state of the surrounding neurons, 

fibroblasts and mast cells  (Zhu et al. 2002).  Nf1(+/-) microglia and mast cells are identified 

as key players in development and maintenance of Nf1-related tumors (Daginakatte & 

Gutmann 2007; Riccardi 1993).  A serum biomarker study showed increased expression 

of inflammatory cytokines such as IFN-γ, TNF-α, IL-6 and EGFR in patients with plexiform 

neurofibromas or MPNSTs (Park et al. 2013), emphasizing the role of the Nf1(+/-) 

heterozygous microenvironment particularly mast cells and monocytes in tumorigenesis.  

Interestingly, the neurofibroma mice models do not develop MPNSTs.   The development 
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of an in vivo disease model of MPNST required haploinsufficiency of both Nf1 and p53, 

in cis orientation on chromosome 11 (Cichowski et al. 1999).   

1.6  Neurofibromin (Nf1) gene and function 

The Nf1 gene is located on chromosome 17q11.2 encoding an ~280kD 

cytoplasmic protein (Gutmann et al. 1995).  The Nf1 gene is composed of 60 exons 

covering over 350 kb of genomic DNA (Li et al. 1995), which results in a protein of 2818 

amino acids (Bernards et al. 1992; Takahashi et al. 1994).  Four alternative transcripts of 

Nf1 have been identified called GRD I, GRD II, 3’ALT, and 5’ALT (Gutmann et al. 1995).  

The NF1 protein is highly conserved with more than 98% homology between human and 

mouse amino acid sequences (Bernards et al. 1993).  NF1 protein is found in the 

cytoplasm where it co-localizes with cytoplasmic microtubules (Gregory et al. 1993).  

Although NF1 is ubiquitously expressed in a variety of tissues and cell types, functional 

studies indicate that NF1 is highly expressed in neurons, glial cells, Schwann cells, and 

oligodendrocytes (Daston & Ratner 1992).   

The NF1 protein contains several domains in addition to the RAS-GRD, which is 

the most extensively studied domain of NF1.  Protein-ligand interactions have been 

reported in the PH-like domain (PH), Sec-14 domain (Sec), tubulin binding domain (TUB), 

cysteine and serine rich domain (CSRD), and Syndecan binding region (SYN) of NF1 

[Fig. 1.1] (S. Welti, 2008).  NF1 forms a complex with CASK and syndecan via its SYN 

domain in vivo (Hsueh et al. 2001).  Yeast two-hybrid system studies have shown that 

NF1 binds caveolin 1, a protein that regulates p21ras, PKC and growth response factors 

(Boyanapalli et al. 2006).  NF1 also regulates adenyl-cyclase activity in the ATP-PKA-

cAMP pathway in astrocytes (Tong et al. 2002; Dasgupta et al. 2003). 

http://en.wikipedia.org/wiki/Caveolin_1
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The most well-studied functional domain of NF1 is the RAS-GRD encoded by exon 

21 to 27a, which shares sequence homology with the p120GAP (Daston & Ratner 1992).  

Increased RAS activity has been reported in NF1 patient-derived MPNST cells (Mattingly 

et al. 2006) as well as mouse models.  Results from an NF1 patient screen demonstrated 

that a missense mutation, R1276P, in Nf1 RAS-GRD leads to an 8000-fold loss of the 

GAP activity of NF1-GRD which can induce most NF1-related pathologies including 

malignant Schwannomas (Klose et al. 1998).  Furthermore, overexpression of Nf1 RAS-

GRD restores cellular growth, proliferation and signaling in Nf1(-/-) cells (Hiatt et al. 2001).  

These reports highlight the importance of NF1 as a tumor suppressor, which inhibits 

cellular transformation by attenuation of Ras signaling and subsequent downstream 

effector pathways.  
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Figure 1.1:  Domains of Neurofibromin I (NF1).  Diagram of the prominent domains of 

NF1.  The GRD highlighted in blue is the RAS GAP-related domain of NF1, which shares 

sequence homology to the p120-GAP protein. The GRD domain is flanked by a tubulin 

binding region (Tub) in grey, Sec-14 domain (Sec) in purple, and a Ph-like domain (PH) 

in red.  NF1 protein also contains a cysteine/serine rich domain (CSRD) in grey, which 

contains a number of cAMP-dependent PKA binding sites. Blue circles indicate 

phosphorylation sites for PKA and yellow circles for PKC-α.  Positions of missense 

mutations are marked by red circles. Figure adapted from Neurofibromatoses (S. Welti, 

2008). 
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1.7  Signaling pathways regulated by NF1 

1.7.1  Ras pathway 

A proposed model of the underlying biological mechanism of Nf1-related MPNSTs 

suggests that de-differentiation of Schwann cells is driven by the Ras pathway, via 

activation of the MEK1/2-ERK1/2 axis (Harrisingh et al. 2004).  NF1 inactivates Ras, 

thereby promoting the differentiation of Schwann cells.  This hypothesis is further 

supported by the Nf1 mouse model where Parada and colleagues demonstrated that the 

congenital lesions of plexiform neurofibromas occur during a short stage in Schwann cell 

development when immature and precursor cells, which are de-differentiated, are most 

abundant (Le et al. 2011).  It logically follows that in the absence of NF1, Ras pathway is 

constitutively active, maintaining Schwann cells in a pre-mature stem like state.  This stem 

cell-like state of cancer cells is distinctively associated with poorly differentiated, 

aggressive tumor sub-types (Monteiro & Fodde 2015).  NF1 also plays an important role 

during self-renewal of neuroglial progenitor cells and differentiation of astrocytes in the 

peripheral nervous system (Hegedus et al. 2007).  Spyra et al. have shown that an 

established MPNST cell line, S462, expresses stem cell markers and characteristics of 

stem-like cells such as self-renewal, clonality and an increased rate of tumor formation in 

vivo (Spyra et al. 2011). 

Given the critical role of Nf1-RAS GRD in development of NF1-related phenotypes, 

including MPNSTs, members of the Ras pathway have been significant targets in 

treatment of MPNSTs.  There are 4 forms of the RAS protein: H-RAS, N-RAS, K-RAS A 

and B, with N-RAS constitutively activated in Nf1-null MPNST cell lines (Mattingly et al. 

2006).  Members of the Ras protein family are mutated in over 30% of cancers, where 
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they are involved in cellular transformation, proliferation, survival, growth and metastases 

(Midgley & Kerr 2002).  The Ras pathway is activated upon binding of growth factor 

ligands (e.g. PDGF, EGF, etc.), which stimulate signaling cascades leading to recruitment 

of guanine nucleotide exchange factors (GEFs).  Prenylation, a post-translational 

modification, of the RAS protein facilitates its attachment to inner cell membrane where 

GEFs allow exchange of Ras-GDP (inactive state) with pools of intracellular GTP, thereby 

activating the Ras pathway (Basso et al. 2006; Gilman 1987).  The Ras pathway is 

inactivated when Ras-GTP is hydrolyzed to Ras-GDP by an intrinsic Ras-GTPase.  The 

hydrolytic activity of the intrinsic Ras-GTPase is weak, therefore inactivation of the Ras 

pathway requires binding of extrinsic GAPs, such as the one encoded by Nf1, to 

accelerate hydrolysis and inactivate Ras (Leondaritis et al. 2009).  In absence of NF1, 

constitutively active GTP-bound Ras activates several downstream signaling pathways.  

1.7.2  RAF-MEK-ERK and PI3K-AKT-MTOR axis 

Ras exerts its diverse array of effects through activation of two prominent 

downstream effector pathways: rapidly accelerated fibrosarcoma (RAF)-Mitogen 

activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK (RAF-

MEK1/2-ERK1/2) pathway and Phosphoinositide 3 kinase-mouse strain AK thymoma-

mechanistic target of rapamycin (PI3K-AKT-mTOR) pathway [Fig. 1.2].  Both these 

signaling pathways regulated by RAS are hyperactivated in various forms of cancers, 

specifically those with aberrant RAS signaling.  Active MEK1/2-ERK1/2 signaling 

promotes cellular proliferation and survival via regulation of cell cycle genes such as 

cyclin D1, pRB, and CDK4 (Samatar & Poulikakos 2014).  The significance of the RAF-

MEK1/2-ERK1/2 is well documented in proliferation and survival of NF1-associated 
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MPNST cell lines (Mattingly et al. 2006).  The activation of MEK1/2 occurs in 91% of 

MPNST patient tissue samples, as compared to 21% of benign neurofibromas (Zou et al. 

2009).   

The induction of RAS also activates the PI3K/AKT/mTOR axis.  Phosphatase and 

tensin homolog (PTEN), the master negative regulator of PI3K/AKT/mTOR axis, is 

frequently methylated in MPNST cell lines leading to increased AKT signaling in these 

cells (Bradtmoller et al. 2012).  Nf1 via its RAS-GRD negatively regulates the PI3K-AKT-

mTOR axis (Johannessen et al. 2005).  The pathogenic role of PI3K/AKT/mTOR pathway 

in MPNSTs is demonstrated by decreased cellular proliferation and angiogenesis in NF1-

associated MPNSTs upon inhibition of mTOR by rapamycin (Bhola et al. 2010).  MEK1/2-

ERK1/2 and PI3K-AKT-mTOR signaling can be modulated independently of RAS by 

extracellular ligands that bind the epidermal growth factor receptors (EGFR).  

Accordingly, a recent study found that overexpression of EGFR via Janus kinase 2/signal 

transducer and activator of transcription 3 (JNK2/STAT3) activation transformed 

neurofibromas into MPNSTs in genetically engineered mice models (Wu et al. 2014).  

These molecular pathways have been the main focus of targeted therapies in NF1-related 

plexiform neurofibromas and MPNSTs; however, these therapies have exhibited limited 

clinical success. 

  



www.manaraa.com

15 

 

 

 

 

 

Figure 1.2:  Prominent NF1-related RAS-associated signaling pathways.  Simplified 

schematic of the NF1-related RAS-associated signaling axis.  NF1 via its GRD attenuates 

Ras signaling. Upon Nf1 deficiency, RAS bound by GTP is constitutively activated leading 

to activation of downstream signaling cascades, notably RAF-MEK1/2-ERK1/2, and 

PI3K-AKT-mTOR pathways.  These pathways can be independently regulated by tumor 

suppressors such as PTEN, which is often methylated in MPNSTs.  Activation of the RAF-

MEK1/2-ERK1/2 and PI3K-AKT-mTOR signaling induces increased growth, proliferation 

and survival of MPNSTs.  
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1.7.3  RAS-independent pathways in NF1-related malignancies 

Several studies have documented the role for NF1 as a tumor suppressor, 

independent of its RAS-GRD.  The importance of NF1 domains other than the RAS GRD, 

is demonstrated by the failure to rescue embryonic lethality of Nf1(-/-) mice by induced 

expression of the GRD.  Even though over-expression of Nf1- RAS GRD rescued mid-

gestation lethality in Nf1(-/-) mice, it did not restore aberrant neural crest tissue 

development resulting in death (Ismat et al. 2006).  NF1 has been shown to have effects 

independent of its regulation of RAS in Nf1(-/-) Drosophilia melanogaster where Ras 

signaling is intact and aberrant cyclic AMP dependent protein kinase A signaling is 

responsible for reduced larvae and adult body size (Guo et al. 1997).  

In fibrosarcoma cell lines, NF1 regulates the Rho-ROCK-LIMK2 pathway 

independent of RAS effector pathways, to induce cytoskeletal reorganization (Ozawa et 

al. 2005).  A deficiency in the RAS-related protein R-RAS2/TC21 in Nf1(-/-) Schwann cells 

results in up-regulation of TGF-β, leading to an increase in brain tumors and sarcomas 

while decreasing neurofibromas (Patmore et al. 2012).  Moreover, gene expression 

profiling of MPNST patient samples revealed a positive correlation between the activation 

of the canonical Wingless/int (Wnt) signaling and malignancy of MPNSTs; in addition, 

subsequent downregulation of Wnt signaling reduced cell viability and tumorigenic 

potential in MPNST cell lines (Watson et al. 2013).  Finally, by using the sleeping beauty 

transposon based somatic mutagenesis system in mice models, a recent study identified 

several new proto-oncogenes and tumor suppressors: FOXR2, PTEN, STAG1, TAOK1, 

BMPR2, etc. that cooperate with the classical Ras-associated pathways in formation of 

MPNSTs (Rahrmann et al. 2013).   
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1.8  Clinical management of MPNSTs 

Surgery is the major curative option for MPNSTs, however it is performed with wide 

margins due to the size and location of these tumors (Friedman 2002).  Even with surgery, 

radiation therapy, and adjuvant chemotherapy, survival for NF1 patients with MPNSTs is 

relatively poor.  The poor prognosis of patients with hereditary NF1-related MPNSTs 

appears to be correlated with the presence of Nf1 microdeletions which are associated 

with increased severity of any NF1-related phenotype (De Raedt et al. 2003).  Another 

analysis suggests that poor survival of MPNST patients with NF1 is due to the size of 

tumors that are bulkier in NF1 patients compared to those with a sporadic MPNST 

(Anghileri et al. 2006).  Concomitantly, large tumor size at presentation (typically >5 cm) 

has been the most consistent adverse prognostic factor for MPNST patients (Zou et al. 

2009; LaFemina et al. 2013).  A meta-analysis of the effect of NF1 status on survival of 

patients with MPNSTs shows a higher odds ratio of survival within the non-NF1 group 

compared to the NF1 group, however within the last decade survival between the two 

groups seems to have converged (Kolberg et al. 2013).   

Chemotherapy for NF1 patients is primarily used in cases of unresectable 

plexiform neurofibromas or metastatic disease such as MPNSTs (Kolberg et al. 2013).  

Doxorubicin and ifosfamide have traditionally been used as the chemotherapy regimen 

for MPNSTs (Zehou et al. 2013).  However, a ten-year institutional review of treatment of 

MPNSTs with doxorubicin and ifosfamide showed no correlation between chemotherapy 

and patient survival, questioning the use of such chemotherapies in MPNST patients 

(Zehou et al. 2013).  In some cases, anthracycline is administered for palliative care in 

MPNST patients (Kroep et al. 2011). 
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Due to the failure of conventional chemotherapy, there has been a push towards 

targeted therapy of specific molecular pathways involved in the biogenesis of NF1-

related MPNSTs.  Based on the indispensable role of mast cells in MPNST 

maintenance, pre-clinical studies targeting the tumor microenvironment of MPNSTs 

have translated into human clinical trials using Gleevec, targeting c-kit function 

[NCT02177825].  The most well-studied function of NF1 is attenuation of the 

constitutively active Ras pathway in MPNSTs.  Hence, inhibitors of the Ras pathway 

and rapamycin analogues have been used to treat gliomas, MPNSTs and plexiform 

neurofibromas, but with limited success.  Tipifarnib, a farnesyl transferase inhibitor (FTI) 

that blocks the prenylation step in activation of the RAS protein, failed Phase II clinical 

trials [NCT00021541] in young NF1 patients with plexiform neurofibromas.  It was 

determined that geranylgeranyl transferase compensates for the inhibition of prenylation 

of N-RAS and K-RAS by FTIs (Lerner et al. 1997; Whyte et al. 1997), suggesting that 

the prenylation, membrane association, and transforming activity of N-RAS and K-RAS 

was unaffected by the inhibition of farnesyl transferase.  BRAF inhibitors, such as 

sorafenib exhibited increased toxicity in NF1 patients in clinical trials (Kim et al. 2013), 

whereas mTOR inhibitor sirolimus did not affect tumor burden, but prolonged time to 

disease progression by four months in plexiform neurofibroma patients (Weiss et al. 

2015). 

Due to the failure of targeting RAS in patients with plexiform neurofibromas, new 

strategies with re-designed agents targeting the downstream effectors of RAS pathway 

are being employed.  Selumetinib, an ATP-independent inhibitor of the MEK1/2 pathway, 

was recently approved by the U.S. Food and Drug Administration (FDA) for the treatment 
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of uveal melanomas.  Over 80% of uveal melanomas harbor mutations in GNAQ or 

GNA11, which behave similarly to BRAF mutations and result in constitutive activation of 

the Mitogen-activated protein kinase (MAPK) pathway (Van Raamsdonk et al. 2010; Van 

Raamsdonk et al. 2009).  Also, selumetinib is currently in over twenty clinical trials for 

various types of cancers, specifically those dependent on increased MAPK signaling.  It 

has proven patient tolerance in clinical trials, although, its effects as a single drug seem 

to be limited (Adjei et al. 2008).  Most importantly, therapeutic efficacy of selumetinib is 

currently being investigated in PHASE II clinical trial for young adults with plexiform 

neurofibromas [NCT02407405].  Due to the inherent complexity of NF1-related MPNSTs, 

a single targeted agent therapy may not be efficacious, and therefore a combinatorial 

approach that targets multiple disease related pathways is the obvious option for 

comprehensive treatment and management of NF1-related MPNSTs.  Targeting of Ras-

associated pathways such as MEK1/2-ERK1/2 and PI3K-AKT-mTOR is necessary in 

plexiform neurofibromas and MPNSTs as these pathways play an important role in tumor 

development and maintenance.  Nonetheless, identification and targeting of Ras-

independent pathways is crucial for management of MPNSTs due to limited therapeutic 

benefits associated with targeting Ras-dependent signaling. 

1.9  The case for targeting BMP2-SMAD1/5/8 signaling in NF1-related MPNSTs 

Our lab conducted a systematic gene expression profiling study using MPNST cell 

lines with variable NF1 status to identify signaling cascades associated with NF1 

malignancy, independent of the RAS-MEK1/2-ERK1/2 signaling, to identify new 

druggable targets for MPNSTs.  Using pathway specific intervention, BMP2 was identified 

as a neurofibromin-dependent gene, independent of NRAS and MEK1/2 regulation (Sun 
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et al. 2013).  Functional significance of BMP2 in MPNSTs was supported by decreased 

cellular migration and invasion upon inhibition of the BMP2 pathway in MPNST cell lines 

(Sun et al. 2013).  The role of BMP2 in progression to MPNSTs is evident by changes in 

its expression levels at various stages of neurofibroma development in clinical specimens.  

Bmp2 expression levels are significantly higher in MPNST patient samples, as compared 

to the benign forms of neurofibromas [Fig. 1.3]. 

  



www.manaraa.com

21 

 

 

 

 

Figure 1.3:  Bmp2 expression levels in various stages of NF1-related 

Schwannomas.  Data mined from a gene expression profiling study of Schwann cells 

derived from neurofibroma patient samples (Miller et al. 2009).  Low levels of Bmp2 are 

detected in normal human Schwann cells (NHSC) as well as cutaneous neurofibromas: 

dermal (dNFSC).  Bmp2 levels in plexiform neurofibromas (pNFSC) are similar to those 

in samples of dNFSCs, with a few outliers.  MPNST patient samples show a remarkable 

increase in relative Bmp2 expression levels.  Analysis of Bmp2 expression in 

neurofibroma patient samples suggests a stage-specific increase in Bmp2 levels, which 

is associated with increased malignancy in NF1 patients (Sun et al. 2013). 
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1.10  Bone Morphogenetic Protein 2 (BMP2) 

Based on amino acid sequence homology, BMP2 belongs to the transforming 

growth factor beta (TGF-β) family, which comprises the largest family of developmental 

peptides (Wozney et al. 1988).  The Bmp2 gene maps to chromosome 20p12, resulting 

in a 396 amino acid glycosylated polypeptide (Rao et al. 1992).  BMP2 is highly conserved 

as mature regions of human, mouse and rat BMP2 are nearly identical (Chen et al. 

2004a).  BMP2 shares 98% amino acid sequence homology with BMP4, another member 

of the TGF-β subfamily (Wozney et al. 1988).  Homozygous Bmp2 mutant mice are non-

viable, due to defects in development of exocoelomic cavity of the cardiac system (Zhang 

& Bradley 1996). 

BMPs signal via hetero-oligomeric complexes of serine/threonine kinase 

receptors, type I and type II receptors.   Specifically, BMP2 signals through three type I 

receptors: BMPR-IA or ALK-3, BMPR-IB or ALK-6, and ActR-IA or ALK-2 (Koenig et al. 

1994).  Upon ligand binding, type I and type II receptors form a hetero-tetrameric receptor 

complex (Moustakas et al. 2002) that initiates a signaling cascade involving Small 

Mothers Against Decapentaplegic (SMAD) family of proteins [Fig. 1.4].  SMAD 1, 5 and 8 

are phosphorylated by the BMP receptor complex, which then associate with SMAD4 

(Chen et al. 2004b).  The SMAD1/5/8-SMAD4 complex translocates to the nucleus and 

initiates gene transcription in a tissue and developmental stage specific fashion 

(Moustakas et al. 2002; Akhurst & Hata 2012).  

  

https://en.wikipedia.org/wiki/Mothers_against_decapentaplegic
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Figure 1.4:  Signaling cascade of BMP and TGF-β pathway.  TGF-β ligands such as 

Activin, Nodal and TSP-1 signal through Type II receptors, whereas the BMP sub-family 

signals via the Type I receptor.  As BMPs bind Type I serine/threonine kinase receptors, 

Type I receptors form a hetero-oligomeric complex with Type II receptors resulting in 

phosphorylation of SMAD1/5/8.  Phosphorylated SMAD1/5/8 associates with SMAD4, 

which results in its translocation to the nucleus.  Various transcription factors regulate the 

nuclear SMAD1/5/8 complex to direct gene expression changes in cell differentiation, 

migration, invasion, and metastasis in a tissue and context-dependent manner.  Noggin 

protein directly binds BMPs to inhibit their binding to the Type I receptor, whereas 

SMAD6/7 negatively regulate phosphorylation, thereby activation of SMAD1/5/8. This 

diagram is adapted from  (Villapol et al. 2013) 
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1.11  Biological functions of BMP2 

BMPs are involved in regulation of growth, differentiation, motility, and apoptosis 

in mesenchymal, epithelial, hematoepoetic, and neural cells during embryogenesis, 

organogenesis, and tissue homeostasis (Chen et al. 2004a; Wu & Hill 2009).  The BMP 

sub-family has been extensively studied for its role in bone development and cartilage 

formation.  BMP2 induces chondrocyte and osteoblast pre-cursor formation by interacting 

with the Sonic Hedgehog pathway during limb development (Niswander & Martin 1993).  

Subcutaneous injections of recombinant BMP2 have been shown to induce periosteal 

bone formation in mice (Chen et al. 2004a).  Due to its extensive role in bone 

development, recombinant human BMP2 (rhBMP2) is administered to patients with 

various forms of fractures, spinal fusions and other bone and cartilage related 

abnormalities (Nauth et al. 2009).  The use of rhBMP2 has been controversial based on 

comparison of its therapeutic benefits versus side effects in clinical trials (Lubelski et al. 

2015).  Interestingly, one of the side effects associated with administering rhBMP2 is 

tumor formation.  A two year follow-up study of lumbar spinal arthrodesis patients who 

received rhBMP2 with bone grafts showed a higher incidence (4.6%) of cancer 

occurrence, as compared to the control group (0.8%), which only received bone grafts 

(Carragee et al. 2013).   

BMPs play multiple essential roles in development of the central and peripheral 

nervous system.  BMP/SMAD signaling is repressed during neural induction and 

development of the nervous system (Liu & Niswander 2005).  BMP2 negatively regulates 

maturation of oligodendrocytes, myelinating cells of the central nervous system, by 

shifting neural precursors towards an astrocytic lineage (See et al. 2004).  BMP2 
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cooperates with the Wnt signaling pathway to maintain pluripotency and suppress 

differentiation of the neural crest stem cells (Kleber et al. 2005).  Although BMPs promote 

early glial development to immature Schwann cells from the neural crest (Dore et al. 

2005), they prevent glial maturation by activation of AP-1 and Sp1 transcription factors 

(TF), which regulate promoter activity of glial fibrillary acidic protein in the peripheral 

nervous system (Dore et al. 2009).  

1.12  Regulation of BMP2 

1.12.1  Molecular inhibitors of BMP2/SMAD Signaling 

Various members of the SMAD family negatively regulate BMP2 by binding its 

receptors and inhibiting their function.  SMAD6 binds type I receptors and prevents the 

binding and phosphorylation of SMAD1/5/8 with SMAD4 (Imamura et al. 1997).  SMAD6 

is part of a negative feedback regulatory mechanism which is regulated by BMPs, given 

that SMAD1 and SMAD5 binding sites have been identified in the promoter of SMAD6 

(Ishida et al. 2000).  Another prominent inhibitor of BMP2 signaling is Noggin, which 

blocks the molecular epitope interfaces of both type I and type II BMP receptors (Krause 

et al. 2011).  Transgenic mouse models of Noggin develop osteoporosis with a significant 

reduction in bone density, volume and formation (Devlin et al. 2003).  

1.12.2  Transcriptional regulation of Bmp2 

Mechanistic studies have demonstrated that Bmp2 is primarily regulated at the 

transcriptional level.  The promoter region of Bmp2 has two major transcription start sites 

(TSS), with greater activity reported in the proximal promoter TSS as compared to the 

distal promoter in osteoblasts (Ghosh-Choudhury et al. 2001; Helvering et al. 2000).  
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Bmp2 is regulated by cis-regulatory elements with most enhancers located between 2.7 

kb of the Bmp2 TSS; however, distant enhancer elements located as far as 153.7 kb of 

the Bmp2 promoter have been shown to drive Bmp2 transcription in osteoblasts.  

(Pregizer & Mortlock 2009; Chandler et al. 2007). 

Multiple pathways converge to activate BMP2 signaling.  Wnt/β-catenin pathway 

controls Bmp2 transcription through the Tcf/Lef response elements in the Bmp2 promoter 

(Zhang et al. 2013).  Retinoic acid is a known inducer of BMP2 signaling which activates 

BMP2 signaling via binding to retinoic acid response elements within the Bmp2 promoter 

in osteoblasts and embryonic carcinoma cells (Rogers et al. 1992; Abrams et al. 2004). 

Inflammatory cytokines such as NF-κB, TNF-α and IL-β regulate Bmp2 transcription in 

chondrocytes and chondrosarcoma cell lines (Fukui et al. 2003; Feng et al. 2003).  p53 

and delta-NP63α in association with SMAD1/5/8 occupy promoters of BMP target genes, 

such as inhibitor of differentiation (ID-1), to repress epithelial-mesenchymal 

transformation in mammary epithelial cells (Balboni et al. 2015).  Bmp2 has also been 

shown to be regulated at the post-transcriptional level by mRNA stabilization.  Tumor 

necrosis factor-alpha (TNF-α) stabilizes Bmp2 mRNA in rat chondrocytes via activation 

of the p38 MAPK pathway (Fukui et al. 2006).  These studies suggest that Bmp2 is 

primarily regulated at the transcriptional level via TF-binding to promoter regions, and/or 

through post-transcriptional mechanisms that modulate Bmp2 transcript stability.  

1.13  Significance of BMP2 in tumorigenesis 

Role of BMP2 in cancer development and maintenance is dependent on the 

affected cell type and microenvironment.  BMP2 is over-expressed in carcinomas of the 

prostate, lung, colon, breast, and ovary (Dai et al. 2008; Katsuno et al. 2008; Bieniasz et 



www.manaraa.com

27 

 

 

 

al. 2015; Yu et al. 2008).  BMP2 and BMP4 increase cellular motility and invasion in 

prostate cancer cell lines in vitro and in vivo (Dai et al. 2008).  However, the role of BMP2 

in prostate and pancreatic cancer cells is dependent on the hormonal status of the cells, 

where BMP2 stimulates tumor growth in androgen-independent prostate and pancreatic 

cancer cell lines but represses tumor formation in androgen-dependent cell lines (Kleeff 

et al. 1999; Ide et al. 1997).  Moreover, BMP2 negatively regulates tumor growth in 

myelomas (Hsu et al. 2005).  The role of BMP2 signaling in breast cancer is also 

controversial.  In MCF-7 breast cancer cells, over-expression of Bmp2 induced a G1 

arrest and promoted apoptosis by increasing levels of cleaved caspase 3 (Chen et al. 

2012).  In contrast, inhibition of BMP2 by LDN-193189 reduced ALDH+ stem-like cells 

and expression of mesenchymal markers inhibiting epithelial to mesenchymal transition 

thus invasion, in mammary epithelial cells (Balboni et al. 2013).   

BMP2 is over expressed in approximately 98% of lung carcinomas with little to no 

expression in normal or benign lung tissue (Langenfeld et al. 2005).  Serum levels of 

BMP2 are two-fold higher in non-small cell lung cancer (NSCLC) patients as compared 

to the controls, correlating with advanced clinical stage of disease (Fei et al. 2013).  BMP2 

promotes tumor proliferation in A549 NSCLC cells via activation of the canonical 

SMAD1/5/8 pathway (Langenfeld et al. 2006), in which inhibition of BMP2 leads to 

decreased cellular proliferation and migration (Chu et al. 2014).  A recent study 

demonstrated that BMP2 in NSCLC cell lines is regulated by microRNAs (miRs).  Induced 

expression of miR-34b, miR-34c, and miR-486 attenuated BMP2 signaling and migration 

and invasion in A549 cells (Fotinos et al. 2014).  Similarly, over-expression of BMP2 in 

epithelial ovarian cancers is well-documented where attachment and motility of epithelial 



www.manaraa.com

28 

 

 

 

ovarian cancer spheroids is regulated by increased expression of BMP2 via activation of 

the AKT pathway (Peart et al. 2012).  Increased Bmp2 mRNA levels in epithelial ovarian 

cancer patient tissue samples positively correlate with tumor grade and shorter survival 

(Le Page et al. 2009).  There are conflicting reports on the role of BMP2 in glioblastoma 

multiforme (GBM).  One study reported that BMP2 is an effective pro-differentiation 

treatment for GBM stem cells and sensitizes these cells to treatment with temozolamide 

(Persano et al. 2012).  On the contrary, Guo et al. showed that BMP2 promotes GBM 

formation by increasing proliferation, migration, and self-renewal of GBM cancer stem 

cells which can be reversed by overexpression of miR-656 (Guo et al. 2014).   

1.14  Proposed role of BMP2 in development of NF1-related neurofibromas and 

MPNSTs 

By comparing conditional Nf1 knockout transgenic mouse models of premature 

non-myelinating Schwann cells versus differentiated Schwann cells, Zheng et al. 

identified Nf1 knockout premature Schwann cells as the cells of origin for plexiform 

neurofibromas (Zheng et al. 2008).  This is in accordance with the neurofibroma 

development model proposed by Harrisingh et al., in which the absence of NF1 and 

constitutively active Ras pathway drives de-differentiation of Schwann cells to a pre-

mature state (Harrisingh et al. 2004), often marked by non-myelinated axons.  Models of 

plexiform neurofibroma and MPNSTs exhibit a premature stem cell-like Schwann cell 

phenotype (Zheng et al. 2008; Spyra et al. 2011), and BMP2 is involved in maintenance 

and differentiation of Schwann cell precursors during development.  Exogenous addition 

of BMP2 to rat Schwann cells inhibits expression of mature myelin-associated genes, 

resulting in a phenotypic switch to a pre-myelinating, immature Schwann cell state (Dore 
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et al. 2005).  Many studies have reported cross-talk between BMP/TGF-β family members 

and Wnt, Notch signaling pathways.  These pathways maintain tumor stem cell niches 

(Giancotti 2015) during development and tumorigenesis (Wu & Hill 2009; Guo & Wang 

2009), and active Wnt signaling promotes the tumorigenic potential of MPNSTs (Watson 

et al. 2013).  These studies suggest a role for BMP2 in transforming neurofibromas to a 

pre-mature stem-like state, which is characteristic of aggressive malignant tumors such 

as MPNSTs.  

One of the major questions in development of MPNSTs is the role of mutations at 

loci other than the NF1 locus, such as p53, Rb, or PTEN.  Only a fraction of NF1 patients 

with plexiform neurofibromas develop MPNSTs, indicating that haploinsufficiency of NF1 

is necessary, but not sufficient for tumor formation (Farid et al. 2014).  Interestingly, the 

mouse models of neurofibroma do not develop MPNSTs (Zhu et al. 2002), as 

development of MPNST in vivo requires haploinsufficiency of both the Nf1 and p53 gene 

(Cichowski et al. 1999).  Given that carcinogenesis is a multi-step process, we expect 

changes in multiple signaling pathways and cellular processes to govern the 

transformation, development and maintenance of MPNSTs.  A retrospective 

immunohistochemical staining of benign Schwannoma patient samples reported 

increased staining of p16INK4A, indicative of senescence, which was absent in MPNST 

patient samples (Simonetti et al. 2014).  Furthermore, Nf1(+/-) melanocytes reprogrammed 

to induced pluripotent stem cells senesce upon complete loss of Nf1 in vivo accompanied 

by an up-regulation of p16INK4A (marker of senescence) and the senescence associated 

secretory phenotype (Larribere et al. 2015).  Ras-induced senescence is a well-studied 

phenomenon where activation of oncogenic features driven by the Ras pathway are 
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impeded by cellular defense mechanisms leading to senescence (Dimauro & David 

2010).  Since NF1 deficiency leads to activation of the Ras oncogene, Ras-driven 

senescence or tumor dormancy may be the major barrier in transformation of benign 

neurofibromas to malignant MPNSTs.  Thus, activation of tumorigenecity would require 

mutations or aberrations in similar cellular defense signaling pathways particularly those 

which regulate cell cycle such as p53, Rb, PTEN, etc.  BMP2 is exclusively up-regulated 

in MPNSTs as compared to benign neurofibromas (Miller et al. 2009), suggesting that 

BMP2 may be one of the key players in transformation of a senescent or dormant state 

of benign neurofibromas to a malignant phenotype.  It is also possible that activation of 

BMP2-SMAD1/5/8 may not trigger the tumorigenic switch but instead contribute to 

transformation and/or maintenance of MPNSTs.   

1.15  Project Overview 

Using gene expression profiling, our lab identified BMP2 as the principal mediator 

of TGF-β signaling in NF1-related MPNSTs, independent of NRAS and MEK1/2 

regulation.  Figure 1.5 shows the BMP/TGF-β pathway analysis of the gene expression 

profiling study, in which BMP2 is the only significant member of the TGF-β family up-

regulated upon Nf1 knockdown in MPNST cell lines.  Other BMP family members did not 

exhibit significant changes in gene expression levels upon Nf1 knockdown, whereas 

BMP4, the closest homolog of BMP2, was down-regulated. 

The following chapters will address the role and significance of BMP2 in NF1-

related MPNSTs.  I will demonstrate the functional significance of targeting BMP2-

SMAD1/5/8 signaling in conjunction with MEK1/2 inhibition in MPNSTs.  I will examine 

the regulatory mechanisms that lead to activation of BMP2 upon knockdown of Nf1 to 
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identify a specific genetic target for increased BMP2 signaling in MPNSTs.  Overall, I will 

present the feasibility of a combinatorial therapeutic approach by combined inhibition of 

the BMP2 pathway with inhibitors of other relevant pathways, to provide a comprehensive 

treatment strategy for improving clinical outcome of NF1-related MPNSTs. 
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Figure 1.5:  Pathway analysis of gene expression changes upon Nf1 knockdown in 
MPNSTs.  iPathway Guide software (Advaita Bioinformatics Co.) was used to analyze 
gene expression changes in the dataset (Sun et al. 2013) comparing STS26T-V(Nf1+/-) 
and STS26T-Nf1 KD cells. Genes highlighted in color exhibit at least a two-fold change 
in expression levels with p-value<0.05.  Red color denotes up-regulated genes and blue 
denotes down-regulation.  According to pathway analysis of gene expression changes 
upon Nf1 knockdown in MPNST cell lines, BMP2 is significantly up-regulated, BMP4 is 
down-regulated, whereas other BMPs do not change significantly.  Other members of the 
TGF-β subfamily such as TGF-β, Activin, TMBS1 are down-regulated.  No significant 
change is noted in Noggin, Chordin, or DAN (negative regulators of BMP2 signaling).  
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CHAPTER II:  Regulation of BMP2 by NF1 in MPNSTS 

2.1  Summary 

NF1 suppresses MPNST formation by regulating RAS-MEK1/2-ERK1/2 and PI3K-

AKT-MTOR signaling pathways, which are constitutively active upon NF1 deficiency and 

play a pivotal role in tumor initiation and maintenance.  Using gene expression profiling 

of MPNST cell lines with variable NF1 status, our lab has identified that NF1 regulates an 

important signaling axis of BMP2-SMAD1/5/8 in MPNSTs.  We have shown that BMP2 is 

up-regulated in Nf1(-/-) MPNST cell lines, and down-regulation of Nf1 results in increased 

Bmp2 mRNA expression and subsequent activation of the SMAD1/5/8 pathway (Sun et 

al. 2013).  This chapter presents additional studies that validate the regulation of BMP2 

by NF1 in novel MPNST cellular models.  This chapter also serves as an introduction to 

the patient-derived Nf1-null MPNST cell lines and Nf1 knockdown systems, which will be 

used to study the therapeutic targeting and mechanistic regulation of BMP2 in MPNSTs 

in the following chapters.   

Data presented in this chapter establish that BMP2 is up-regulated upon NF1 

deficiency at both transcript, protein, and secreted protein levels in MPNST cell lines.  

BMP2 expression levels were determined in low passage patient-derived Nf1(-/-) MPNST 

cells that are unaffected by artifacts of prolonged cell culturing, and better simulate the 

physiological condition of MPNSTs in vivo as compared to the high passage cells used 

previously.  Furthermore, the regulation of BMP2 by NF1 is evaluated by using two 

independent knockdown systems: stable lentiviral-mediated Nf1 knockdown and 

conditional Nf1 knockdown. 
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2.2  Materials and Methods 

2.2.1 Cell culture and cell lines 

All MPNST cell lines used in this study were maintained in RPMI 1640 medium 

(Invitrogen, Waltham, MA, USA) supplemented with 5% fetal bovine serum (Hyclone 

Laboratories, South Logan, UT, USA).  Low passage human MPNST ST88-14(Nf1-/-), and 

low passage T265(Nf1-/-) cells were a generous gift from Dr. Margaret Wallace 

(Department of Molecular Genetics and Microbiology, University of Florida, FL, USA).  

High passage human MPNST ST88-14(Nf1-/-) cells (from T. Glover, University of 

Michigan, Ann Arbor, MI, USA), T265(Nf1-/-) cells (from G. De Vries, Hines VA Hospital, 

Hines, IL, USA), and STS26T(Nf1+/-) cells (from D. Scoles, Cedars-Sinai Medical Center, 

Los Angeles, CA, USA), were cultured for at least over 100 passages in our lab.  

STS26T(Nf1+/-) cell line was used to establish a stable Nf1 knockdown cell line, and the 

inducible Nf1 knockdown cell lines.  Cell lines were periodically checked and found 

negative for mycoplasma using MycoAlert Mycoplasma Detection Kit (Lonza, Basel, 

Switzerland).  Cultures were propagated for no more than 3 months at a time.   

2.2.2  Lentivirus shRNA mediated stable Nf1 knockdown and inducible Nf1 

knockdown system 

The pGIPZ lentiviral Nf1 shRNA vector, Clone ID: V2LHS_76032 (Open 

BioSystems, GE Dharmacon, Lafayette, CO, USA), was used for targeted knockdown of 

Nf1 in the STS26T(Nf1+/) cell line.  Nf1 shRNA and scrambled control lentiviral particles 

were generated in HEK293T cells using a Trans-Lentiviral Packaging Kit (Thermo Fisher 

Scientific, Waltham, MA, USA).  STS26T(Nf1+/-) cells were infected with pGIPZ lentiviral 

particles and selected with puromycin (1.0 µg/mL) for 8 days post-infection.  Selected 
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cells were confirmed by fluorescence microscopy for green fluorescence protein (GFP) 

expression, and a pooled population was maintained in selection media containing 

puromycin (0.5 µg/mL) for duration of experiments.   

Conditional Nf1 knockdown cell lines were established using the parent Schwann 

cell line STS26T(Nf1+/-).  STS26T was infected with two different clones of TRIPZ 

inducible lentiviral Nf1 shRNA, Clone ID: V2THS_260806, and V3THS_380114 (GE 

Dharmacon, Lafayette, CO, USA).  Conditional Nf1 knockdown cells were selected with 

and maintained in puromycin (0.25 µg/mL).  Individual colonies were picked to generate 

three stable tetracycline-regulated clonal cell lines.  Selected clones were confirmed by 

fluorescence microscopy for expression of red fluorescence protein (RFP) present on the 

vector.  Doxycycline (2 µg/mL) was added to cells to induce activation of the inducible 

lentiviral Nf1 shRNA 24 hours prior to experiments. 

2.2.3  Western blot analysis 

Cells grown to 60-80% confluence were washed with cold PBS, scraped and lysed 

with RIPA buffer (150 mM NaCl; 1% Triton X-100; 0.5% deoxycholic acid, 0.1% SDS; 50 

mM Tris-Cl; pH 8.0) supplemented with 1% protease inhibitor cocktail, 1% PMSF (from 

stock at 10 mg/mL in methanol), 1 mM Na3VO4, 1 mM Na4P2O7.10.H2O, and 1 mM NaF.  

Eighty-five µg of whole cell lysate were loaded per well on 8% SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) for subsequent detection of neurofibromin.  Sixty five µg of 

whole cell lysate per well were run on 10% SDS-PAGE for subsequent detection of the 

phosphorylated and total forms of SMAD1/5/8 and ERK1/2.  α-Tubulin was used as the 

loading control in all western blots.  0.45 µm nitrocellulose transfer membrane (Fisher 

Scientific, Waltham, MA, USA) was used for protein transfer.  
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Primary antibodies used in these experiments were rabbit polyclonal anti-

neurofibromin 1:600 (#A300-140A, Bethyl laboratories, Montgomery, TX, USA), rabbit 

monoclonal anti-phospho-SMAD1/5/8 1:600 (#9516S, Cell Signaling, Danvers, MA, 

USA), mouse monoclonal anti-phospho-ERK1/2 1:1,000 (#9106S, Cell Signaling), rabbit 

polyclonal anti-SMAD1/5/8 1:400 (#9106S, Cell Signaling), rabbit monoclonal anti-

ERK1/2 1:1,000 (#4695S, Cell Signaling), and mouse monoclonal anti-α-tubulin 1:5000 

(#T5168, Sigma-Aldrich, St. Louis, MO, USA).  Secondary antibodies 1:10,000, were 

conjugated to IRdye infrared dyes (Rockland Immunochemicals, Limerick, PA, USA).  

Signal was detected using the Odyssey infrared imaging system and software (Licor 

Biosciences, Lincoln, NE, USA) and the protein bands were quantified using ImageJ 

software.   

2.2.4  ELISA test for secreted BMP2 protein 

Cell culture supernatants were collected 24 hours post-incubation in RPMI-1640 

supplemented with 0.5% FBS.  Conditioned media was collected and concentrated using 

Amicon Ultra-4 Centrifugal filter units with 3 kDa cut-off (Merck Millipore, Billerica, 

MA, USA).  Secreted BMP2 levels were analyzed using the BMP2 Quantikine ELISA kit 

(R&D Systems, Minneapolis, MN, USA).  Duplicates of each sample were analyzed per 

experiment.  A standard curve was generated using optical density (O.D.) of the BMP2 

standards provided by the vendor.  Secreted BMP2 levels for each sample were 

calculated against the standard curve and normalized to the standard medium as well as 

total protein concentration in conditioned media.   

2.2.5  RNA extraction and quantitative real time PCR 
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RNA was extracted from 100 mm plates of 70-85% confluent cells using the 

RNeasy Mini Kit (#74106, Qiagen, Valencia, CA, USA).  Three batches of total RNA (2.0 

µg) for each cell line were reverse transcribed by SuperScript® II First-Strand Synthesis 

System (Invitrogen, Waltham, MA, USA).  Q-RT-PCR was performed using Power SYBR 

Green MasterMix (Applied Biosystems, Carlsbad, CA, USA) and analyzed on the ABI 

5700 Sequence Detection System (Applied Biosystems, Carlsbad, CA, USA). Primer 

sequences for each gene analyzed are listed in Table 2.1. The relative fold change was 

calculated using the CT method as follows: 2-ΔΔCT, where, ΔΔCT = (CT Bmp2 - CT Gapdh) 

experiment - (CT Bmp2 - CT Gapdh) control. 

Table 1:  Primer sequences used for gene expression studies by qRT-PCR 

Gene Forward Reverse 

Bmp2 GACACTGAGACGCTGTTCC CCATGGTCGACCTTTAGG 

Gapdh ATCAAGAAGGTGGTGAAGCAG TGTCGCTGTTGAAGTCAGAGG 

 

2.2.6  Statistical Analyses 

All experiments presented were replicated a minimum of three times.  Paired t-test or 

ANOVA was used to determine the significant differences at 95% confidence interval.   

2.3  Results 

2.3.1  BMP2 is up-regulated in MPNSTs, independent of cell passaging effects 

Our lab has previously demonstrated a significant increase in Bmp2 mRNA levels 

in ST88-14(Nf1-/) and T265(Nf1-/-) MPNST cell lines as compared to normal human 

Schwann cells (Nf1+/+)  (Sun et al. 2013).  However, the Nf1(-/-) MPNST cell lines used in 
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the previous study had been cultured over many passages.  Cells in culture are constantly 

subjected to environmental and manipulative stresses, which may introduce genotypic 

and phenotypic variations by selection of a dominant clone.  These potential artifacts 

introduced by prolonged cell culturing are well-documented in literature.  For example, 

PI3K-AKT signaling pathway inhibits activity of the androgen receptor in low passage 

prostate cancer cells, however this effect is reversed in the high passages of the same 

cell line (Lin et al. 2003).  To circumvent the inherent bias of the cell culture system, low 

passage (LP) patient-derived MPNST cells, passages:8-16 for LP ST88-14(Nf1-/-), and 

passages:10-18 for LP T265 (Nf1-/-) cell lines are used in this study to validate the role of 

BMP2 in MPNSTs.  The results obtained from the LP (Nf1-/-) MPNST cells are presented 

with those obtained from the high passages (HP) of the same (Nf1-/-) MPNST cell lines. 

To assess the steady-state expression levels of Bmp2 mRNA in the LP Nf1-null 

MPNST cells, RT-PCR for Bmp2 was performed using Gapdh as the housekeeping gene 

[Fig 2.1].  Fold changes for the tested cell lines were normalized to Bmp2 expression 

levels in the Nf1 heterozygous cell line: STS26T(Nf1+/-).  Increased expression of Bmp2 

mRNA is detected in the LP MPNST cells similar to the HP cells [Fig. 2.1].  Bmp2 mRNA 

levels are higher in the ST88-14(Nf1-/-) cells as compared to the T265(Nf1-/-) cell lines,  
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Figure 2.1:  Quantitative RT-PCR of Bmp2 mRNA in MPNST cells.  In Nf1-null MPNST 

cells, the expression of Bmp2 is significantly higher than in the STS26T(Nf1+/-) cells, which 

is used to calculate the relative fold change.  RNA was extracted between passages 8-

14 from LP ST88-14(Nf1-/-), passages 155-170 for HP ST88-14(Nf1-/-), passages 10-16 

for LP T265(Nf1-/-) cells, and passages 208-230 for HP T265(Nf1-/-) cells.  Data are 

presented as mean of three independent experiments ± SD (*P<0.05, **P<0.01, 

***P<0.001, n=3 compared with the STS26T(Nf1+/-), One-way ANOVA followed by 

Tukey’s test for multiple comparisons). 

  

*** 

* 
** ** 

* 
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independent of passage numbers, however these differences are statistically 

insignificant. 

Next, the abundance of BMP2 protein was assessed by using phosphorylation of 

SMAD1/5/8 as the readout in western blots in the low and high passage Nf1-null MPNST 

cells.  Upon binding of its receptor, BMP2 activates a signaling cascade leading to the 

activation via phosphorylation of the SMAD1/5/8 complex.  Figure 2.2 shows that 

phospho-SMAD1/5/8 is detected in all LP and HP ST88-14(Nf1-/-) cells.  Analysis of low 

and high passage T265(Nf1-/-) cells shows an active BMP2-SMAD1/5/8 pathway as well, 

in which there is a slightly greater level of phospho-SMAD1/5/8 levels in the low passage 

T265(Nf1-/-) cells as compared to its high passage counterpart.  The presence of 

phospho-ERK1/2 in all of the tested cell lines is indicative of an active MEK1/2-ERK1/2 

pathway, which is expected to be up-regulated in the absence of NF1 and subsequent 

RAS activation.  The Nf1-null status of these cell lines is confirmed in the western blot, as 

no band for neurofibromin is detected in any of the cell lines [Fig 2.2].  

The SMAD1/5/8 pathway can be activated by other members of the BMP sub-

family such as BMP4, BMP7, BMP9, etc.  As I used activation of SMAD1/5/8 as the 

surrogate for BMP2 in western blots, the secretion of BMP2 was assessed to ensure that 

the activation of SMAD1/5/8 is due to increases in BMP2 levels.  This allows us to 

delineate the activation of SMAD1/5/8 pathway by BMP2 from other BMP family 

members.  Furthermore, secretion of BMP2 is representative of its functional activity in 

both LP and HP Nf1-null MPNST cells.  By using the sandwich ELISA methodology, 

conditioned media from each cell line was tested for levels of secreted BMP2 and 

normalized to the medium control without cells.  Levels of secreted BMP2 in the 
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conditioned media of each cell line are significantly higher compared to the control 

medium [Fig 2.3].  LP and HP ST88-14(Nf1-/-) cells secrete between ~150-200 pg/mL of 

BMP2.  HP ST88-14(Nf1-/-) cells secrete significantly higher levels of BMP2 (~200 pg/mL) 

as compared to the HP T265(Nf1-/-) cells (~100 pg/mL).  Otherwise, differences in the 

secretory concentration of BMP2 between low and high passage Nf1-null MPNST cell 

lines is statistically insignificant.  In summary, profiling of BMP2 mRNA, protein, and 

secretion shows that BMP2 is expressed in Nf1-null MPNST cell lines, independent of 

passage numbers.  The data presented in this section has validated our previous findings 

of BMP2 over expression in Nf1-null MPNSTs. 
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Figure 2.2:  Activation of SMAD1/5/8 and MEK1/2-ERK1/2 pathways in MPNST cells.  

Representative western blot (n=3), of LP and HP (Nf1-/-) MPNST cells lines confirms the 

NF1-null status of these cell lines as neurofibromin is not detected in any of the tested 

cells.  Activation of the BMP2-SMAD1/5/8 pathway via detection of phospho-SMAD1/5/8 

shows an activated BMP2-SMAD1/5/8 signaling axis. The discrepancy of phospho-

SMAD1/5/8 levels between low and high passage ST88-14 (Nf1-/-) cells can be explained 

by reduced loading in the HP ST88-14(Nf1-/-) cells, as shown by the abundance of tubulin 

used as the loading control.  Phosphorylation of both ERK1 and ERK2 is detected in all 

the cell lines, indicating an active RAS-MEK-ERK pathway. 
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Figure 2.3:  Secreted levels of BMP2 in NF1-null MPNST cells.  Analysis of BMP2 

secretion by ELISA using conditioned media from MPNST cell lines.  BMP2 is secreted 

in both low and high passage Nf1-MPNST cells.  Accounting for standard deviation, 

secreted levels of BMP2 vary minimally in both low and high passage ST88-14(Nf1-/-) cell 

lines, with 150-200pg/mL of secreted BMP2, respectively.  BMP2 secretion in HP ST88-

14(Nf1-/-) cells is significantly higher than in the HP T265(Nf1-/-) cells (P<0.01), however 

the difference between secretion of BMP2 in the LP ST88-14(Nf1-/-) and LP T265(Nf1-/-) 

is statistically insignificant .  Cell culture supernatants from each cell line were collected 

24 hours post-incubation in RPMI-1640 with 0.5% FBS, and plated in duplicates on to the 

BMP2 ELISA plate.  Secreted BMP2 levels for each sample were calculated against the 

standard curve, and normalized for the medium, as well as total protein in conditioned 

media.  Data are presented as mean of three independent experiments ± SD (***P<0.001, 

****P<0.0001, n=3 compared with the STS26T(Nf1+/-), One-way ANOVA followed by 

Tukey’s test for multiple comparisons). 

**** **** 

**** 

*** 
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2.3.2  BMP2 is regulated by NF1 in MPNST cells 

We have established that BMP2 is overexpressed in Nf1-null MPNST cells, 

independent of prolonged cell culturing effects.  This sub-section will demonstrate that 

the transcript and protein levels of BMP2 are dependent on the NF1 status in MPNST 

cells.  Results from our gene expression profiling study of a transient Nf1 knockdown in 

MPNST cells validated by RT-PCR has shown a two-fold increase in the levels of Bmp2 

mRNA upon knockdown of Nf1, which was followed by the activation of SMAD1/5/8 

pathway (Sun et al. 2013).  To validate the regulation of BMP2 by NF1, we generated two 

novel Nf1 knockdown systems.  The first approach was to generate a stable lentiviral Nf1 

knockdown cell line from a sporadic MPNST cell line STS26T(Nf1+/-).  To eliminate any 

positional bias from the lentivirus site of chromatin integration, pooled populations of 

infected cells were used.  The second approach was to generate an inducible Nf1 

knockdown cell model, in which down-regulation of Nf1 can be temporally controlled in 

the same cell population.  The inducible Nf1 shRNA system provides the most specific 

cellular model to study the precise effect of Nf1 on other signaling pathways by 

circumventing any bias introduced by off-target effects of the Nf1 knockdown or control 

shRNA constructs.  Moreover, by using multiple individual clones generated by the 

inducible Nf1 knockdown shRNAs, the possibility of genotypic or phenotypic variations 

among clonal cell lines or introduced by the site of lentiviral integration is minimized.   

2.3.2.1  Increased BMP2 expression upon down-regulation of neurofibromin 

STS26T(Nf1+/-), a sporadic MPNST cell line, was infected with either an Nf1 

shRNA lentivirus to generate the STS26T-Nf1 KD cells, or a scrambled control to 

generate the STS26T-V(Nf1+/-) cell line.  The lentiviral infection was confirmed by 
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detection of the GFP-tag present on the plasmid vector by fluorescence microscopy. After 

selection for eight days, pooled populations from both stably-infected cell cultures were 

used.  These cell cultures were propagated for maximum 6 weeks because at 8 weeks 

or thereafter, presence of the NF1 protein was detected in the Nf1 knockdown cells.  This 

can be possibly due to methylation of the long terminal repeats (LTR) of the lentiviral 

plasmid, or activation of a feedback mechanism by which Nf1 is re-activated in these cell 

lines.   

To validate the regulation of BMP2 by NF1, changes in the mRNA, protein, and 

secretory levels of BMP2 were assessed between the STS26T-V(Nf1+/-) and STS26T-Nf1 

KD cells.  Bmp2 mRNA levels upon Nf1 KD were determined by calculating the fold 

changes in Bmp2 levels relative to the STS26T-V(Nf1+/-) cell line [Fig. 2.4].  Bmp2 mRNA 

levels increase approximately two-fold in the STS26T-Nf1 KD cells as compared to the 

vector control, validating our previous findings based on the transient Nf1 knockdown 

using miRNA oligonucleotides.  RNA from HP ST88-14(Nf1-/-) cells was used as a positive 

control.   

Results from the western blot and its quantification revealed ~75% knockdown 

efficiency of Nf1 in the STS26T-Nf1 KD cells [Fig. 2.5].  Although phospho-SMAD1/5/8 is 

detected in the STS26T-V(Nf1+/-) cells, indicative of an active SMAD pathway, there is 

increased phosphorylation of SMAD1/5/8 in the STS26T-Nf1 KD cells [Fig. 2.5(A)].  

Quantification of the western blot shows that upon knockdown of Nf1, levels of 

phosphorylated SMAD1/5/8 almost doubled in these cells [Fig. 2.5(B)].  As Nf1 negatively 

regulates the Ras pathway, STS26T-Nf1 KD cells show a significant increase in the levels 

of phospho-ERK1/2, indicative of activation of the MEK1/2-ERK1/2 axis of the Ras 
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pathway.  Analysis of BMP2 secretion by ELISA demonstrates that levels of secreted 

BMP2 are dependent on the NF1 status [Fig. 2.6].  Approximately 90 pg/mL of BMP2 is 

secreted upon knockdown of Nf1, whereas insignificant differences in BMP2 secretion 

are noted between the vector control cells and the control media.  Secreted levels of 

BMP2 in the STS26-Nf1 KD cells are similar to those in the HP T265(Nf1-/-) cells at ~100 

pg/mL [Fig 2.3].  Although phospho-SMAD1/5/8 is detected in the STS26T-V(Nf1+/-) cells 

in Fig. 2.5, the absence of BMP2 secretion in the same cell line [Fig. 2.6] highlights that 

NF1 exclusively regulates BMP2, independent of other BMP sub-family members, leading 

to phosphorylation of SMAD1/5/8 complex in MPNST cells.  Data collected from the 

pooled Nf1 knockdown cells suggests that mRNA, protein, and secreted protein levels of 

BMP2 are regulated by NF1, in which down-regulation of NF1 results in an increase in 

BMP2 expression levels and activity.   
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Figure 2.4:  Bmp2 mRNA changes upon Nf1 knockdown.  Upon knockdown of Nf1 in 

the STS26T(Nf1+/-) cells, expression of Bmp2 increases two-fold as compared to the 

vector control cell line.  Fold changes were normalized to steady-state mRNA levels in 

the STS26T-V(Nf1+/-) cells.  ST88-14(Nf1-/-) cells were used as a positive control, where 

Bmp2 expression was significantly higher than the expression in the sporadic MPNST 

cells (P<0.001).  Data are presented as mean of three independent experiments ± SD 

(**P<0.01, ****P<0.0001, n=3 compared with the STS26T-V(Nf1+/-), One-way ANOVA 

followed by Tukey’s test for multiple comparisons). 

  

** 
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Figure 2.5:  Activation of BMP2-SMAD1/5/8 pathway is dependent on NF1 levels.  A: 

Representative western blot (n=3) shows that upon knockdown of Nf1 in the 

STS26T(Nf1+/) cells, levels of phosphorylated SMAD1/5/8, indicative of BMP2 status, and 

phospho-ERK1/2 increase.  ST88-14 (Nf1-/-) cells were used as a positive control. n=3.  

B: Quantification of the western blot shows that a knockdown efficiency of ~75% results 

in an almost 200% increase in levels of phosphorylated SMAD1/5/8.  Phosphorylated 

ERK1/2 levels increase by ~220%. Paired t-test, n=3, *P<.05, **P<.01.  Data presented 

are mean quantification of 3 independent western blots ± SD. 
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Figure 2.6:  Secreted levels of BMP2 are regulated by NF1.  Secreted levels of BMP2 

are significantly higher from the STS26T-Nf1 KD cells, as compared to the STS26T-

V(Nf1+/-) cells.  Approximately 90 pg/mL of BMP2 is secreted from the STS26T-Nf1 KD 

cells, whereas insignificant differences in BMP2 secretion are noted between STS26T-

V(Nf1+/-) cells and the media control.  Cell culture supernatants from each cell line were 

collected 24 hours post-incubation in RPMI-1640 with 0.5% FBS, and plated in duplicates 

onto an ELISA plate coated with the BMP2 antibody.  Secreted BMP2 levels for each 

sample were calculated against the standard curve, and normalized for the medium, as 

well as total protein concentration in conditioned media.  Paired t-test, n=3, **P<0.01. 

Data are presented as the mean of three independent experiments ± SD. 

  

** 
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2.3.2.2  Changes in BMP2 levels are dependent on NF1 status in an inducible Nf1 

knockdown system 

To verify that changes in BMP2 expression are exclusively dependent on the NF1 

status of MPNST cells, an inducible Nf1 knockdown system was chosen to study the 

regulation of BMP2 by NF1 in the same cell population.  The inducible Nf1 shRNA 

constructs used in these experiments are driven by a tetracycline-responsive promoter, 

in which Nf1 shRNA is activated by addition of doxycycline (dox), a more stable derivative 

of tetracycline.  We employed two tetracycline-regulated Nf1 shRNA constructs as 

described in the methods section to generate three inducible Nf1 KD cell lines.  The 

plasmid backbone for both vectors is the same with variable Nf1 shRNA sequences.  

Conditional knockdown (Cond. KD) #2 and #3 were generated from the same inducible 

Nf1 shRNA, whereas Cond. KD #1 was generated from a different Nf1 shRNA construct.  

Between eight to thirteen colonies were picked from cells infected with each Nf1 shRNA 

construct after selection for twelve days.  After which, these colonies were expanded and 

maintained in selection media.  Nf1 shRNA expression was induced by addition of 

doxycycline (2 µg/mL) for 24 hours prior to assays.  The inducible Nf1 shRNA vector 

contains a RFP-tag which along with the Nf1 shRNA is driven by the tetracycline-

responsive promoter.  Hence, the presence of RFP expression is indicative of the 

activated Nf1 shRNA.  Based on RFP expression in dox-treated cells compared to the 

untreated, three colonies were expanded and used for further experiments [Fig. 2.7].  

Increasing the concentration of doxycycline did not affect levels of RFP expression in 

these cells.   
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Figure 2.7:  RFP expression in doxycycline-treated conditional Nf1 KD cells.  Using 

fluorescence microscopy, three clones generated from two inducible Nf1-shRNA 

constructs infected in the STS26T(Nf1
+/-

) cells were selected based on RFP expression 

after 24 hours of treatment with doxycycline (2 µg/mL).  Each clone is labeled as 

conditional knockdown (Cond KD) followed by the clone number.  The conditional 

activation of the Nf1 shRNA is dependent on treatment with doxycycline. The non-

doxycycline treated cells of these clones did not show any RFP expression (data not 

shown).  RFP was detected by the TRITC filter of the Olympus fluorescence microscope 

with an excitation/emission wavelength of 488/532 nm, respectively. 
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Changes in the mRNA levels of Bmp2 were determined by RT-PCR of the 

untreated vs. the dox-treated conditional knockdown cells [Fig. 2.8].  As expected, levels 

of Bmp2 mRNA increased upon induction of Nf1 shRNA by doxycycline, as compared to 

the untreated controls.  Levels of Bmp2 mRNA increase between ~1.6-1.85 fold in each 

of the conditional KD cells, which is lower than the two-fold difference seen in the pooled 

STS26T-Nf1 KD cells, as shown in Figure 2.1.  Insignificant differences in Bmp2 mRNA 

levels between the dox-treated STS26T(Nf1+/-) and untreated STS26T(Nf1+/-) cells 

suggests that the increased Bmp2 mRNA levels in the dox-induced conditional Nf1 

knockdown cells is not an off-target effect of doxycycline. 

To evaluate changes in the protein abundance of activated SMAD1/5/8 complex 

and ERK1/2 upon knockdown of Nf1 in the conditional KD cells, western blotting was 

used [Fig 2.9].  First, we established that 2 µg/mL of doxycycline (concentration used to 

induce the knockdown) does not affect phosphorylation of the SMAD1/5/8 complex [Fig 

2.9(A)].  Fig 2.9(B) and (C) show that the induction of phospho-SMAD1/5/8 and phospho-

ERK1/2 are dependent on the status of NF1, following the same pattern as the pooled 

stable Nf1 KD cells.  Upon treatment with doxycycline for 18-24 hours, the efficiency of 

Nf1 knockdown remained fairly consistent in multiple western blots with Cond KD #2 and 

#3 displaying better knockdown efficiency as compared to Cond KD#1.  Cond KD #2 and 

#3 are clones picked from infected cells derived from infection of the same Nf1 shRNA 

construct, suggesting that the efficiency of KD in the inducible system is dependent on 

the specific shRNA construct.   

In Figure 2.10, secretion of BMP2 was evaluated by ELISA from the conditional 

KD cells.  As shown by insignificant changes in secreted BMP2 levels between dox-
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treated STS26T(Nf1+/-) cells and untreated control, 2 µg/mL of doxycycline does not affect 

secretion of BMP2.  All conditional Nf1 KD cells showed an increase in the secreted levels 

of BMP2 upon induction of the Nf1 shRNA in a span of 24 hours.  In the conditional KD 

cells, secreted BMP2 levels are dependent on the efficiency of KD as shown by the results 

of western blotting in the same cell lines.  Cond. KD#1 cells secrete lower levels of BMP2 

as compared to the Cond. KD#2 and #3, which exhibit better Nf1 knockdown efficiency. 
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Figure 2.8: Quantitative RT-PCR of Bmp2 mRNA in conditional Nf1 knockdown 

cells.  Upon treatment with doxycycline (2 µg/mL) for 24 hours, Bmp2 mRNA levels 

increase between 160-185% in clones of the conditional Nf1 knockdown cells.  

STS26T(Nf1+/-) cells treated with dox (2 µg/mL) were used as a negative control to 

eliminate any dox-dependent changes in Bmp2 mRNA levels.  Percent fold change for 

each cell line were normalized to the untreated controls of each cell line which was set at 

100%.  Paired t-test, n=3, *P<0.05. Data are presented as the mean of three independent 

experiments ± SD.  

  

* * 
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Figure 2.9:  BMP2-SMAD1/5/8 pathway is activated upon induction of Nf1 shRNA.  
A: Treatment of STS26T(Nf1+/-) cells with various concentrations of doxycycline for 24 
hours shows that 2 µg/mL doxycycline has no effect on the SMAD1/5/8 pathway. B: 
Representative western blot (n=3) of the inducible Nf1 KD cells indicates that upon 
treatment with 2 µg/mL doxycycline for 24 hours, levels of NF1 are downregulated 
resulting in an increase in phospho-SMAD1/5/8 and phospho-ERK1/2 levels (n=3). C: 
Quantification of protein bands was normalized to untreated cells.  Results suggest a 
proportional activation of p-SMAD1/5/8 and p-ERK1/2 based on the efficiency of KD of 
Nf1.  Data presented are mean quantification of 3 independent western blots ± SD 
(*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, n=3, compared to the untreated controls 
of each cell line, One-way ANOVA, followed by Tukey’s test for multiple comparisons).    
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Figure 2.10:  Secretion of BMP2 is regulated by NF1 in conditional Nf1-KD cells.  

Evaluation of secreted BMP2 levels level upon induction of Nf1 shRNA.  As shown by 

insignificant changes in BMP2 secretion of the parent STS26T(Nf1+/-) cell line upon 

treatment with doxycycline (2 µg/mL), dox does not affect secreted levels of BMP2.  Upon 

treatment with dox (2 µg/mL), secretion of BMP2 was induced in the conditional Nf1 KD 

cells.  Untreated control cells of conditional KD #1, #2, and #3 secrete little to none BMP2, 

levels of which significantly increase upon induction of the Nf1 shRNA by treatment with 

doxycycline.  Cell culture supernatants from each cell line were collected 24 hours post-

incubation in RPMI-1640 with 0.5% FBS.  Doxycycline (2 µg/mL) was added to the 

indicated cells at the start of the 24-hr incubation period.  Collected conditioned media 

was plated in duplicate onto an ELISA plate coated with the BMP2 antibody.  Secreted 

BMP2 levels for each sample were calculated against the standard curve, and normalized 

for the medium, as well as total protein concentration in conditioned media.  Paired t-test, 

n=3, **P<0.01. Data are presented as mean of three independent experiments ± SD. 

** 

** 

** 
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2.4  Conclusions 

By using various MPNST cellular models and Nf1 knockdown systems, data 

presented in this chapter have verified that NF1 regulates BMP2 expression in MPNST 

cell lines.  Specifically, down-regulation of NF1 results in increases in mRNA, protein, and 

secreted levels of BMP2.  Both low and high passage ST88-14(Nf1-/-) and T265(Nf1-/-) 

cells exhibit increased levels of Bmp2 mRNA expression, active BMP2-SMAD1/5/8 and 

MEK1/2-ERK1/2 pathways, and increased secretion of BMP2 as compared to the 

STS26T Nf1(+/-) MPNST cells.  Thereby, we can conclude that overexpression of BMP2 

in MPNSTs is independent of cell culture passage effects.  LP Nf1(-/-) MPNST cells were 

chosen to validate BMP2 expression and activity as they are a better physiological model 

of MPNSTs as compared to the HP Nf1(-/-) MPNST cell lines that were subjected to 

prolonged cell culturing.  Concomitantly, data obtained from the LP Nf1(-/-) MPNST cells 

corroborates the gene expression profiling data of MPNST patient tissue samples by an 

independent group in which BMP2 is exclusively up-regulated in MPNSTs as compared 

to other benign forms of neurofibromas (Miller et al. 2009).   

By using two independent Nf1 knockdown cellular models, we validated the 

regulation of BMP2 by NF1, independent of genotypic variations that can be introduced 

by off-target effects of shRNAs and sites of lentivirus insertion.  Both the pooled Nf1 KD 

cells and the doxycycline-inducible Nf1 KD cells have increased Bmp2 mRNA expression 

and protein levels as compared to the control (Nf1+/-) cells.  Data obtained from both the 

pooled and the conditional Nf1 KD cells demonstrated that the activation of the BMP2-

SMAD pathway is dependent on the percentage of Nf1 knockdown.  The greater the 

decrease in NF1 levels, the higher the increase in levels of phosphorylated SMAD1/5/8 
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and secreted levels of BMP2.  In summary, the increase in BMP2 expression and 

subsequent activation of the SMAD pathway is dependent on NF1 status in MPNST cells.  

  



www.manaraa.com

59 

 

 

 

CHAPTER III:  Therapeutic efficacy of combinatorial targeting of BMP2 and 

MEK1/2 in MPNSTs 

3.1  Summary 

The clinical management of MPNSTs is quite challenging due to its aggressive 

nature and limited therapeutic options.  Surgical resection of the tumor with wide margins 

is often insufficient to remove all tumors cells and necessitates the use of chemotherapy 

to target the cancer cells left behind.  Given that conventional chemotherapy has met with 

limited success in the management of MPNSTs, targeted therapy of aberrant signaling 

cascades involved in tumorigenesis is crucial for improving the clinical outcome of 

MPNST patients.  The goal of this chapter is to test novel therapeutic strategies to target 

the viability, growth, proliferation, and invasiveness of MPNSTs by exploiting mechanisms 

of signal transduction downstream of the NF1 deficiency.  In doing so, we will explore the 

functional significance of targeting BMP2 alone, and in combination with available 

therapeutic options targeting the constitutively active RAS-MEK1/2-ERK1/2 pathway.  To 

determine the therapeutic efficacy of targeting of these signaling pathways in MPNSTs, 

a small molecule inhibitor of the BMP2 type I receptor (LDN-193189) and a MEK1/2 

inhibitor (Selumetinib) was employed.  Data presented in this chapter are an evaluation 

of the anti-cancer effects of mono-therapy or combinatorial therapy by these agents.   

BMP2 is overexpressed in many different tumor types and has been associated 

with motility, invasiveness, and metastasis (Singh & Morris 2010); all of which are defining 

features of malignant spread of MPNSTs.  Through inhibition of BMP2 signaling by LDN-

193189, our lab has previously shown that LDN-193189 reduces cellular motility and 

invasiveness in various MPNST cell lines in vitro (Sun et al. 2013).  Data presented in this 
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chapter validate these effects in physiologically relevant cellular models.  Additionally, we 

demonstrate that selumetinib synergizes with LDN-193189 to decrease cellular viability, 

whereas combination treatment with both the candidate agents does not affect cellular 

migration and invasiveness of MPNST cells in comparison to treatment with LDN-193189.  

3.2  Materials and Methods 

3.2.1  Western blot analysis 

MPNST cells were treated with specified concentrations of LDN-193189 and/or 

AZD6244 or with vehicle control (DMSO) for indicated time points.  These were washed 

with ice cold PBS, scraped and lysed with RIPA buffer (150 mM NaCl; 1% Triton X-100; 

0.5% deoxycholic acid, 0.1% SDS; 50 mM Tris-Cl; pH 8.0) supplemented with 1% 

protease inhibitor cocktail, 1% PMSF (from stock at 10 mg/ml in methanol), 1 mM Na3VO4, 

1 mM Na4P2O7.10H2O, and 1 mM NaF.  Sixty-five µg of whole cell lysate was loaded per 

well of 10% SDS-PAGE for subsequent detection of total and phosphorylated forms of 

SMAD1/5/8 and ERK1/2.  α-Tubulin was used as the loading control.  0.45 µm 

nitrocellulose transfer membrane (Fisher Scientific, Waltham, MA, USA) was used for 

protein transfer.  

Primary antibodies used in these experiments were rabbit monoclonal anti-

phospho-SMAD1/5/8 1:600 (#9516S, Cell Signaling, Danvers, MA, USA), mouse 

monoclonal anti-phospho-ERK1/2 1:1000 (#9106S, Cell Signaling), rabbit polyclonal anti-

SMAD1/5/8 1:400 (#9106S, Cell Signaling), rabbit monoclonal anti-ERK1/2 1:1000 

(#4695S, Cell Signaling) and mouse monoclonal anti-α-tubulin (#T5168, Sigma-Aldrich, 

St. Louis, MO, USA).  Secondary antibodies were conjugated to IRdye infrared dyes 

(Rockland Immunochemicals, Limerick, PA, USA).  Signal was detected using the 
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Odyssey infrared imaging system and software (Licor Biosciences, Lincoln, NE, USA) 

and the protein bands were quantified using ImageJ software.   

3.2.2  In vitro cytotoxicity assays 

In vitro cytotoxicities of LDN-193189, and AZD6244, alone or in combination were 

measured by using 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT) 

(Sigma-Aldrich, St. Louis, MO, USA) in STS26T-V(Nf1+/-), STS26T-Nf1 KD, low and high 

passage ST88-14(Nf1-/-), and low and high passage T265(Nf1-/-) cells.  Briefly, 1500-3000 

cells were added to a 96-well plate and cultured in the presence of increasing drug 

concentrations for 48 hours. After 48 hours, MTT was added to a final concentration of 5 

mg/mL. After four hours, formazan crystals were solubilized by addition of 0.1 N HCl in 

anyhydrous isopropanol. Crystals were allowed to dissolve for 15 minutes with gentle 

shaking, after which plates were read within an hour using a microplate reader at 570 nm, 

with a background subtraction of 690 nm.  GI50 values were calculated as drug 

concentrations necessary to inhibit 50% growth compared to untreated control cells using 

GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, USA). The anti-viability 

interaction of LDN-193189 and AZD6244 was determined by standard isobologram 

analyses and by evaluating combination index (CI) values, calculated using CompuSyn 

software (ComboSyn Inc., Paramus, NJ, USA), where CI < 1, CI = 1, and CI > 1 indicate 

synergistic, additive, and antagonistic effects, respectively. 

3.2.3  Wound healing assay:  

The effect of LDN-193189 and AZD6244 on motility was investigated by using 

CytoSelect™ Wound Healing Assay Kit (Cell Biolabs, Inc., San Diego, CA, USA).  Cells 

were seeded at 4-5x104 cells/well in 24-well plates containing inserts aligned in the same 
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direction and incubated for 24 hours to allow the cells to adhere.  After 24 hours, inserts 

were removed, and cells were washed twice with PBS to remove dead cells and debris. 

Next, the cells were treated with indicated concentrations of LDN-193189 and AZD6244 

for another 48 hours.  To better quantify the cell migration images by fluorescence, low 

and high passage T265(Nf1-/-) and ST88-14(Nf1-/-) cells were infected with the GFP 

expressing lentiviral plasmid.  Migration into the wound field was determined by 

fluorescent images focused on the center of the wound field, photographed by Olympus 

IX71 fluorescent microscope, and area of the scratched region in pixels was quantified by 

ImagePro Software (Media Cybernetics, Rockville, MD, USA).  This assay was 

independently repeated at least three times per cell line.  

3.2.4   In vitro cell invasion assay: 

The effects of LDN-193189 and AZD6244 alone, or in combination on MPNST cell 

invasion were determined using the CytoSelect™ 96-well cell invasion assay kit (Cell 

Biolabs Inc., San Diego, CA, USA) containing polycarbonate membrane inserts (8 µm 

pore size).  Cells were pretreated overnight with indicated concentrations of LDN-193189, 

AZD6244, alone or in combination before seeding to the chambers.  The day of seeding, 

the basement membrane layer was rehydrated by adding 100 µl of warm, serum-free 

medium to the inner compartment and incubated for 1 h in a cell culture incubator. A 100 

µl cell suspension (1 × 105 cells/ml) for each cell line in serum-free medium with/without 

the indicated treatments was plated in duplicates on to the upper chamber wells 

containing the basement membrane after removal of the rehydration media.  FBS was 

used at 10% as the chemoattractant of which 150 µl was added to the feeder tray. 

Duplicate controls of each cell suspension were plated in upper chambers adjoining 
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feeder wells without any chemoattractant.  After 18 h of incubation, the medium in the 

membrane chamber was transferred to a new harvesting tray containing 150 µl of 

detachment solution for 30 min. The cells were dislodged completely from the underside 

of the membrane by gently tilting the membrane several times.  Fifty microliters of 4x lysis 

buffer/CyQuant GR dye solution was added to all samples, which were then incubated 

for 20 min at room temperature.  One hundred and fifty microliters of the lysate was 

transferred to a black walled plate with optical bottoms (Sigma-Aldrich, St. Louis, MO, 

USA) and fluorescence measurements were performed in a fluorescence plate reader 

Spectramax I3X (Molecular Devices, Sunnyvale, CA, USA) at 480 nm/520 nm.  This 

assay was independently repeated three times. 

3.2.5  Statistical analyses and synergy calculations: 

All experiments presented were replicated a minimum of three times.  Paired t-test or 

ANOVA was used to determine the significant differences at 95% confidence interval.  

Drug/drug synergy was evaluated by the Chou combination index (CI) using Compusyn 

software (http://www.combosyn.com).  For these calculations, 8-point dose response 

curves for LDN-193189 in combination with selumetinib were constructed.  Bliss 

Independence (BI) model was used to calculate the therapeutic interactions of the 

combination of candidate agents on migration and invasion as follows: 

BI = ((Fa+Fb)-(Fa x Fb))/Fab 

where: 

Fa = fraction of effect of drug A 

Fb = fraction of effect of drug B 

(Fa+Fb)-(Fa x Fb) = predicted sum of the effects of combination treatment 

http://www.combosyn.com/
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Fab = actual effect of combination therapy found experimentally 

3.3  Results 

To investigate the therapeutic efficacy and significance of targeting BMP2-

SMAD1/5/8 alone and in combination with MEK1/2-ERK1/2 signaling, we evaluated the 

effects on cell viability, migration and invasion of MPNST cells upon single and dual 

targeting of the aforementioned pathways.  First, we determined the optimal dose for 

inhibition of the targeted pathways by the candidate agents.  This was followed by a 

comprehensive analysis of the effects on cell viability, migration and invasion of single 

agent treatment versus combination treatment.  The experiments presented in the 

following sections have been conducted in both low and high passage Nf1(-/-) MPNST cell 

lines to minimize any cell line specific effects.  Analysis of the data from the LP Nf1(-/-) 

MPNST cells provides physiologically relevant assessment of  the anti-tumor interactions 

of the candidate agents.     

3.3.1  LDN-193189 inhibits BMP2-SMAD1/5/8 signaling 

BMP2 exerts its functional effects by binding to the BMP-activated Type I 

receptors, which then form a complex with Type II receptors with serine threonine kinase 

activity resulting in phosphorylation of SMAD1/5/8.  The phosphorylated form of 

SMAD1/5/8 binds SMAD4 to translocate to the nucleus and thereby regulate gene 

expression (Chen et al. 2004a).  To study the role of activated BMP2-SMAD1/5/8 

signaling in MPNSTs, we utilized a small molecule inhibitor of BMP signaling, LDN-

183189 [Fig. 3.1(A)].  Upon binding to the Type I receptors, LDN-193189 suppresses the 

hetero-oligomerization of the Type I and Type II serine/threonine kinase receptors leading 

to the inhibition of phosphorylation of the SMAD1/5/8 complex (Vogt et al. 2011) [Fig 
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3.1(B)].  For BMP2, receptor oligomerization is the critical step dictating the initiation of 

the SMAD1/5/8 signaling axis (Nohe et al. 2002).  Thereby, inhibition of the BMP2-

SMAD1/5/8 signaling by inhibition of the ligand binding to the Type I receptors by LDN-

193189 allows us to investigate the therapeutic potential of targeting BMP2 in MPNSTs.  

Currently, there are no FDA approved BMP2 receptor inhibitors.  LDN-193189 is 

the most specific BMP2 activated Type I receptor inhibitor.  It has at least a 100-fold 

selectivity for type I receptors (ALK2, ALK3 and ALK6) over other receptors of the TGF-

β pathway (Engers et al. 2013).  Results from animal studies demonstrate that LDN-

193189 is readily available in plasma after intraperitoneal injection or oral administration 

with a plasma half-life of 1.6 – 4.3 hours depending on the mode of delivery (Hong & Yu 

2009; Cuny et al. 2008).  Most importantly, LDN-193189 administered at biochemically 

relevant concentrations does not induce weight loss, growth retardation, skeletal, 

hematopoietic or developmental abnormalities, when administered for more than two 

months to newborn or adult mice (Yu et al. 2008).   

We evaluated the inhibition efficacy of LDN-193189 at different concentrations and 

time intervals in MPNST cells to optimize the drug application. We found that treatment 

of ST88-14(Nf1-/-) cells with 0.01 μM LDN-193189 for 1 hour resulting in nearly complete 

inhibition of phospho-SMAD1/5/8 [Fig. 3.1(C)].  Upon increasing concentrations of LDN-

193189 particularly 0.03 µM to 0.3 µM, total SMAD levels increase.  We further evaluated 

the effects of using LDN-193189 on the MEK1/2-ERK1/2 pathway.  We did not find any 

changes in the activation of ERK1/2 at 0.01 µM LDN-193189 or at a 30-fold higher 

concentration of 0.3 µM LDN-193189.  All MPNST cell lines used in the study exhibited 

the same response to treatment with LDN-193189.  From these data we concluded that 
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a dosage between 0.01 µM and 0.3 µM of LDN193189 effectively inhibits BMP2 signaling 

by preventing phosphorylation of SMAD1/5/8 without any effects on MEK1/2-ERK1/2 

signaling in MPNST cells.  

3.3.2  Selumetinib inhibits MEK1/2 signaling in MPNST cells 

Kinases of the MAPK pathway are significant targets for cancer therapy.  MEK1/2 

phosphorylates ERK1/2 on the tyrosine and threonine residues in the activation loop 

leading to promotion of cell survival, growth and proliferation [Fig. 3.2(B)].  Selumetinib is 

a specific ATP-uncompetitive inhibitor of the MEK1/2 [Fig. 3.2(A)] which is in clinical trials 

for various types of cancers specifically those that are dependent on increased MAPK 

signaling.  It was recently approved by the U.S. FDA for treatment of uveal melanomas, 

in which GNAQ and GNA11 mutations drive the activation of the MAPK pathway (Van 

Raamsdonk et al. 2010; Van Raamsdonk et al. 2009).  Selumetinib has also been 

clinically evaluated as a single and a combinatorial drug in a variety of cancers including 

melanoma, pancreatic, biliary tract, colorectal, and lung cancers (Haass et al. 2008; 

Bennouna et al. 2011; Hainsworth et al. 2010; Bekaii-Saab et al. 2011).  Most importantly, 

selumetinib has proven patient tolerance in clinical trials, however, its effects as a single 

drug seem to be limited (Adjei et al. 2008).  Selumetinib is currently in Phase II clinical 

trial for young adults with NF1 and inoperable plexiform neurofibromas [NCT02407405].  

Preliminary data from the Phase I study on plexiform neurofibromas in NF1 patients 

shows that selumetinib has a mean terminal plasma half-life of 7.6-7.7 hours, depending 

on level of dosage in NF1 patients.  Notably, all patients with >1 MRI restaging had a 

median decrease of 24% in the volume of plexiform neurofibromas, with reversible 

toxicities (Widemann et al., 2014). 
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The chemical name of selumetinib is AZD6244, which is used in the figures of this 

chapter.  To test the efficacy of selumetinib, we treated MPNST cells with indicated 

concentrations of selumetinib to optimize the drug application [Fig. 3.2(C)].  We found 

that the treatment of ST88-14(Nf1-/-) cells with 0.03 μM selumetinib for 1 hour inhibits 

phosphorylation of ERK1/2 nearly completely.  We further evaluated the effect of using 

0.03 μM selumetinib on the BMP2-SMAD1/5/8 pathway, in which we did not find any 

changes in SMAD1/5/8 signaling dependent at the concentration of selumetinib up to 

3.0µM.  Dose response for selumetinib treatment was similar in all MPNST cell lines used 

in this study. 
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Figure 3.1:  Efficacy of LDN-193189 in inhibiting BMP2-SMAD1/5/8 signaling.  A: 

The chemical structure of LDN-193189 (Engers et al. 2013).  B: Schematic of the BMP2-

SMAD1/5/8 signaling pathway and inhibition by LDN-193189.  C: Representative western 

blot of titration of LDN-193189 in MPNST cells to determine optimal dose of inhibition. 

LDN-193189 inhibits phospho-SMAD signaling at 0.003 µM and more efficiently at 0.01 

µM, without any effects on the ERK signaling pathway in the ST88-14(Nf1-/- cells).  Cells 

were treated with the indicated concentrations for 1 hour and whole cell lysate was 

fractionated on SDS-PAGE followed by immunoblotting for indicated proteins. 

C 
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Figure 3.2:  Efficacy of selumetinib (AZD6244) in inhibition of MEK1/2-ERK1/2 

signaling.  A: The chemical structure of AZD6244 (Yeh et al. 2007).  B: Schematic of the 

AZD6244 inhibition of MEK1/2 leading to inhibition of ERK1/2.  C: Representative western 

blot of titration of AZD6244 in MPNST cells to determine optimal dose of inhibition. 

AZD6244 inhibits phospho-ERK1/2 at 0.03 µM and continues to inhibit the MEK1/2-

ERK1/2 pathway without any effects on the SMAD1/5/8 pathways. Cells were treated with 

the indicated concentrations for 1 hour and whole cell lysate was fractionated on SDS-

PAGE followed by immunoblotting for indicated proteins. 
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3.3.3  Selumetinib synergizes with LDN-193189 to decrease viability of MPNST cells 

In order to investigate the effects of BMP2 or MEK1/2 inhibition on cell viability in 

MPNSTs, a standard 48-hour MTT assay was employed.  Concentration ranges were 

initially chosen based on results from the western blot analysis, corresponding with the 

length of the MTT assay [Fig. 3.3].  LDN-193189 as a single agent has a cell viability GI50 

range of ~1.0-2.0 µM as a single agent in various MPNST cell lines [Figs. 3.4(A), 3.5(A), 

3.6(A)].  The GI50 of LDN-193189 at which it affects cellular viability is at least 10-fold 

higher than the dose required to inhibit SMAD1/5/8 signaling in 48 hours as seen by 

western blotting [Fig. 3.3(A)].  Therefore, the effects on cellular viability and proliferation 

of MPNST cell lines by LDN-193189 are potentially off-target effects of a higher dose. 

Next, we determined the cell viability GI50 of selumetinib in MPNST cell lines.  

STS26T-V(Nf1+/) and STS26T-Nf1 KD cells have a cell viability GI50 of ~10 µM [Fig. 

3.4(B)], HP ST88-14(Nf1-/-) and HP T265(Nf1-/-) cells have GI50s between 7-9 µM [Figs. 

3.5(B), 3.6(B)], respectively.  LP ST88-14(Nf1-/-) and LP T265(Nf1-/-) cells are more 

sensitive to selumetinib treatment with a cell viability GI50 range of ~3-4 µM as compared 

to their HP counterparts [Figs. 3.5(B), 3.6(B)].  Interestingly, selumetinib also requires a 

much higher concentration to affect cellular viability than the concentration required to 

inhibit its target in 48 hours [Fig. 3.3].  The cell viability GI50s obtained for the single agent 

treatments were used for determination of appropriate concentration ranges of these 

agents in combinatorial cell viability studies. 
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Figure 3.3:  Analysis of inhibition of BMP2 by LDN-193189 and MEK1/2 by 

selumetinib (AZD6244) upon 48 hours of drug treatments.  A: LDN-193189 continues 

to inhibit phospho-SMAD1/5/8 at the low concentration of 0.01 µM in 48 hours, however, 

it requires between 0.03 and 0.1 µM for complete inhibition of the target in 48 hours. None 

of the tested concentrations of LDN-193189 up to 1.0 µM had any effects on MEK1/2-

ERK1/2 signaling. Similar dose responses were obtained for all tested MPNST cell lines.  

B: AZD6244 inhibits phospho-ERK1/2 in a concentration dependent manner, in which 

increasing the concentration of the drug leads to a further decrease in phospho-ERK1/2 

levels.  Cells were treated with the indicated concentrations for 48 hours, and whole cell 

lysate was fractionated on SDS-PAGE followed by immunoblotting for indicated proteins.   
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After identification of the proper concentration range for each of the drugs on cell 

viability, the effects of the combination of LDN-193189 and selumetinib were determined 

by a 48 hour MTT assay.  Standard isobolograms and combination indices (CIs) were 

used to compare the combinatorial effects of both agents.  Isobolograms take into account 

the GI50 of each drug and allow for a quick evaluation of the nature of the drug interaction.  

Each axis is representative of the concentration of the indicated drug.  Any combination 

that lies below the line connecting the points representing GI50s of single drug treatments 

is considered to be synergistic, those on the line are considered additive, and those above 

the line are considered antagonistic interactions.   We used four concentrations of 

selumetinib ranging from 0.1 µM to 3.0 µM, based on the biochemically relevant inhibition 

of the MEK1/2-ERK1/2 pathway at 48 hours, in combination with seven increasing doses 

of LDN-193189 corresponding with its cell viability GI50 in each of the cell lines.  

Selumetinib and LDN-193189 synergistically inhibited cell viability in the STS26T-V(Nf1+/-

) and STS26T-Nf1 KD cells with CI values ranging from 0.55-0.74 [Figs. 3.4(C) and (D)].  

The combinatorial drug treatment has a strong to moderate synergistic effect on cell 

viability in the HP ST88-14(Nf1-/-) cells [Fig. 3.5(D)].  While combinatorial treatment of HP 

T265(Nf1-/-) cells trends towards additivity at low concentrations of selumetinib, it appears 

to synergize at the higher doses [Fig 3.6(D)].  Dual treatment with LDN-193189 and 

selumetinib show a strong synergistic interaction inhibiting cell viability of both LP ST88-

14(Nf1-/-) and T265(Nf1-/-) cells [Figs. 3.5(C), and 3.6(C)].  Table 3.1 displays the average 

CI values obtained from combination treatments of the tested MPNST cell lines. 

From the cell viability studies of LDN-193189 as a single agent or in combination 

with selumetinib, we conclude that these drugs synergize to inhibit cellular viability in 
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MPNST cells.  The strongest synergistic interaction of both agents is seen in the low 

passage MPNST cells with the combination of LDN-193189 and lower concentrations of 

selumetinib.  However, the inhibitory effects on cell viability by LDN-193189 and 

selumetinib are potentially off-target effects as the individual GI50s of the candidate agents 

are higher than the effective dose at which these agents inhibit their targets.  
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Figure 3.4:  The combinatorial effects of LDN-193189 and selumetinib (AZD6244) 

on cell viability in STS26T-V(Nf1+/-) and STS26T-Nf1 KD cells.  A and B:  The GI50s 

for single agent treatments are plotted on a semi-logarithmic scale in which x-axis (log10 

scale) indicates drug concentration and y-axis represents % effect on cell viability as 

measured by 48-hour MTT assays. Data were analyzed by non-linear regression analysis 

to generate sigmoidal dose response curves and each point represents mean value from 

three independent experiments ± SD.  A: The effects of single treatment by LDN-193189 

on the percent of viable STS26T-V(Nf1+/-), GI50: 1.8 ± 0.2 and STS26T-Nf1 Kd cells, GI50: 

2.1 ± 0.1.  B: The effects of single treatment by AZD6244 on the percent of viable 

STS26T-V, GI50: 9.8 ± 0.8, and STS26T-Nf1 KD cells, GI50: 10.2 ± 0.3.  C and D: Standard 

isobologram analyses of the interactions between LDN-193189 and AZD6244 on cell 

viability.  Each axis represents the GI50 concentration of the indicated drug.  All drug 

combinations in both cell lines show a synergistic effect. Data points represent the 

average value from three independent experiments ± SD.   
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Figure 3.5:  The combinatorial effects of LDN-193189 and selumetinib (AZD6244) 

on cell viability in low and high passage ST88-14(Nf1-/-) cells.  A and B: The GI50s for 

single agent treatments are plotted on a semi-logarithmic scale in which x-axis (log10 

scale) indicates drug concentrations and y-axis represents % effect on cell viability as 

measured by 48-hour MTT assays. Data were analyzed by non-linear regression analysis 

to generate sigmoidal dose response curves, and point represents mean value from three 

independent experiments ± SD.  A: The effects of single treatment by LDN-193189 on 

the percent of viable LP ST88-14(Nf1-/-), GI50: 1.3 ± 0.3 and HP ST88-14(Nf1-/-), GI50: 2.0 

± 0.1.  B: The effects of single treatment by AZD6244 on the percent of viable LP ST88-

14 (Nf1-/-), GI50: 2.7 ± 0.2, and HP ST88-14 (Nf1-/-), GI50: 7.6 ± 0.3.  C and D: Standard 

isobologram analyses of the interactions between LDN-193189 and AZD6244 on cell 

viability.  Each axis represents the indicated drug concentrations.  All drug combinations 

exhibit a synergistic effect in both low and high passage cells with increased synergy in 

the LP ST88-14(Nf1-/-) cells. Data points represent the average value from three 

independent experiments ± SD.  
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Figure 3.6: The combinatorial effects on cell viability of LDN-193189 and 

selumetinib (AZD6244) in low and high passage T265(Nf1-/-) cells.  A and B:  The 

GI50 for single agent treatments are plotted on a semi-logarithmic scale in which x-axis 

(log10 scale) indicates drug concentrations and y-axis represents % effect on cell viability 

as measured by 48-hour MTT assays. Data were analyzed by non-linear regression 

analysis to generate sigmoidal dose response curves. Data points represent mean values 

from three independent experiments ± SD.  A: The effects of single treatment by LDN-

193189 on the percent of viable LP T65(Nf1-/-) cells, GI50: 0.1 ± 0.4 and HP T65(Nf1-/-) 

cells, GI50 2.1 ± 0.1.  B: The effects of single treatment by AZD6244 on the percent of 

viable LP T65(Nf1-/-), GI50: 3.5 ± 0.2, and HP T65(Nf1-/-) cells, GI50: 9.1 ± 0.4, as measured 

by 48 hour MTT assay.  C and D: Standard isobologram analyses of the interactions 

between LDN-193189 and AZD6244 on cell viability. All drug combinations exhibit a 

synergistic effect in both low and high passage cells with increased synergy reported in 

the LP T265(Nf1-/-) cells. Each axis represents the indicated concentrations of that drug. 

Data points represent the average value from three independent experiments ± SD.  
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CI values 

Combination 
Drug 

Treatments 

MPNST cell lines 

STS26T-
V (Nf1+/-) 

STS26T-
Nf1 KD 

LP 

ST88-14 

(Nf1-/-) 

HP 

ST88-14 

(Nf1-/-) 

LP 

T265 

(Nf1-/-) 

HP 

T265 

(Nf1-/-) 

LDN-193189 
+0.1µM AZD 

0.73 0.65 0.58 0.85 0.62 0.99 

LDN-193189 
+0.3µM AZD 

0.64 0.61 0.39 0.86 0.48 0.99 

LDN-193189 
+1.0µM AZD 

0.55 0.74 0.32 0.91 0.37 0.71 

LDN-193189 
+3.0µM AZD 

0.68 0.67 0.92 0.84 0.78 0.65 

 

Table 2:  CI values for combination treatment of MPNST cells.  CalcuSyn software 

was used to calculate the combination index (CI), according to the median-effect method 

of Chou-Talay. CI values less than 1, 1, and greater than 1, represent synergism, 

additivity, and antagonism, respectively. The combinatorial treatment has a synergistic 

effect on cell viability in the STS26T-V(Nf1+/-) and STS26T-Nf1 KD cell lines.  HP ST88-

14(Nf1-/-), and HP T265(Nf1-/-) trend towards additivity at lower concentrations of 

AZD6244, however, increasing the dose of AZD6244 increases synergy in these cell 

lines.  Both LP ST88-14(Nf1-/-) and T265(Nf1-/-) cells exhibit a strong synergistic 

interaction at lower doses of AZD6244 combined with LDN-193189.  The CI values shown 

are averages of CI values of three independent experiments per cell line and treatment 

conditions.  
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3.3.4  The effects of combinatorial targeting of BMP2 and MEK1/2 signaling 

pathways on cellular migration and invasion in MPNSTs µM 

Metastases of MPNSTs occurs in about 39% of patients (Panigrahi et al. 2013) 

with the most frequent metastatic sites being lungs, lymph nodes, and liver (Wong et al. 

1998).  As expression of Bmp2 positively correlates with malignancy in neurofibromas 

(Miller et al. 2009), increased expression of BMP2 in MPNSTs may promote metastatic 

characteristics such as cell migration and invasion.  To investigate the effects of BMP2 

on migration and invasion of MPNST cell lines upon treatment with LDN-193189 and/or 

selumetinib, we employed an in vitro wound healing assay and a basement membrane 

invasion assay. 

To determine the nature of the therapeutic interaction of LDN-193189 and 

selumetinib on migration and invasion of MPNST cells, Bliss Independence (BI) model 

was used.  BI model assumes different, independent, mutually nonexclusive sites of 

action for the candidate agents (Geary 2013; Foucquier & Guedj 2015), which is the case 

in this study.  Based on the western blot analyses [Figs. 3.1(C), 3.2(C)], the 

concentrations used in the migration and invasion assays for LDN-193189 (0.01 µM, 0.1 

µM) do not affect phosphorylation of ERK1/2, and treatment with 0.03 µM and 0.3 µM 

selumetinib has no effect on the phosphorylation of SMAD1/5/8 in the MPNST cell lines. 

3.3.4.1  Combinatorial treatment with LDN-193189 and selumetinib does not affect 

cellular migration as compared to single treatment with LDN-193189 in MPNST cells 

For the wound healing assay, cell lines were treated with two concentrations of 

LDN-193189 (0.01 and 0.1 µM) and selumetinib (0.03 and 0.3 µM), which result in 

biochemical inhibition of their respective targets as per the length of the wound healing 
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assay.  It is important to note that cell viability and growth, as tested by the MTT assay, 

is unaffected by the concentration of the drugs used for the migration and invasion studies 

[see results section 3.3.3].  For the wound healing assay, cells were plated in 24-well 

plates on either side of the wound area made by inserts.  After 24 hours of plating, the 

inserts were removed, and cells were washed and treated with the indicated 

concentration of the drugs.  As the vehicle control treated cells were unable to close the 

gap of the wound area within 24 hours of treatment, the wound healing assay was 

extended to 48 hours with a daily dose of the indicated drugs.  Fluorescent images were 

captured prior to the drug treatments (pre-treatment), 24 hours, and 48 hours post-

treatment and quantified by the wound healing module of the Image Pro software.  

Representative images of the analysis with wound areas highlighted in blue are shown 

for one of the treatment conditions for each cell line.  The boundaries of the wound field 

created by the cells are based on the selected thresholds for each image and background 

fluorescence intensity is subtracted per image.  Cell migration to the wound field at 24 h 

and 48 h time intervals is normalized to the area of the wound in pre-treatment conditions.   

Treatment with 0.01 µM and 0.1 µM LDN-193189 effectively reduces the cell 

migration field of LP ST88-14(Nf1-/-) and LP T265(Nf1-/-) cells [Figs. 3.7, 3.8].  Selumetinib 

(0.03 µM) has no effect on migration in any of the tested cell lines as compared to the 

control.  However, increasing the dose of selumetinib to 0.3 µM inhibits migration 

significantly in both the low passage cell lines.  Even though the combination treatment 

in the low passage cells reduces migration, this effect is insignificant as compared to 

single treatment with LDN-193189.  Based on the BI calculations, the combinatorial 

effects of these drugs trend from additivity to antagonism, with the exception of LP ST88-
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14 which shows a weak synergistic interaction of the drug combination when treated with 

0.01 µM LDN-193189 and 0.03 µM selumetinib.  Similarly, the migratory ability of both 

HP ST88-14(Nf1-/-) and HP T265(Nf1-/-) cells is greatly reduced by LDN-193189.  

However, addition of selumetinib lowers the inhibitory effect on migration by single 

treatment with LDN-193189, resulting in a strong antagonistic effect [Figs. 3.9, 3.10]. 

Results from the wound healing assays suggest that the addition of selumetinib to 

LDN-193189 does not significantly affect cellular migration as compared to single 

treatment with LDN-193189, which has a strong effect on cellular migration by itself in 

MPNST cells.  Interestingly, low passage Nf1(-/-) MPNST cells are more sensitive to 

selumetinib in regards to their migratory potential as compared to the high passage Nf1(-

/-) MPNST cells.  We had also found the low passage Nf1(-/-) MPNST cells to be more 

sensitive to selumetinib in cell viability assays [see results section 3.3.3]. 



www.manaraa.com

81 

 

 

 

A             CTRL           LDN-193189           AZD6244             Combination  
             (DMSO)                 (0.1 µM)        (0.3 µM)           Treatment 

 

 

Pre-treatment 

 

 

24 hrs  

Post-treatment 

 

 

48 hrs 

Post-treatment 

 

B 

       

Figure 3.7:  The combinatorial treatment with LDN-193189 and selumetinib (AZD6244) 
does not affect cellular motility in LP ST88-14(Nf1-/-) cells.  A:  Representative images of 
the analyzed cellular wound area of LP ST88-14(Nf1-/-) cells taken at different time points during 
the course of the migration assay. The highlighted blue lines represent the analyzed wound area.  
B: The percent quantification of the wound area was normalized to the pre-treatment wound area 
for each condition. LDN-193189 (0.01 µM, 0.1 µM) reduces the motility of LP ST88-14 cells 
(P<0.001).  AZD6244 affects motility only at a higher concentration of 0.3 µM (P<0.001).  The 
combination of both the drugs results in an insignificant decrease in motility, as compared to single 
treatment with LDN-193189.  BI values represent a low synergistic to additive effects of the drug 
combinations.  Data presented are the mean average of quantification of the wound areas of at 
least three independent experiments ± S.D (n=3, One-way ANOVA for single treatments as 
compared to control, Two-way ANOVA for combination treatments compared to LDN-193189 
followed by Tukey’s test for multiple comparisons).  
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A   CTRL              LDN-193189           AZD6244              Combination  
             (DMSO)                 (0.1 µM)        (0.3 µM)           Treatment 
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Figure 3.8:  The combinatorial treatment with LDN-193189 and selumetinib (AZD6244) 

does not affect cellular motility in LP-T265 (Nf1-/-) cells.  A:  Representative images of the 

analyzed cellular wound area of LP T265(Nf1-/-) cells taken at different time points during the 

course of the migration assay. The highlighted blue lines represent the analyzed wound area.  

B:  The percent quantification of the wound area was normalized to the pre-treatment wound 

area for each condition. LDN-193189 (0.01 µM, 0.1 µM) reduces the motility of LP T265 cells 

as compared to the control (P<0.0001).  AZD6244 affects motility only at a higher 

concentration of 0.3 µM (P<0.001).  The addition of AZD6244 to LDN-193189 does not 

significantly affect motility as compared to single treatment with LDN-193189.  BI values 

represent an antagonistic effect of drug combinations on motility.  Data presented are the 

average of quantification of the wound areas of at least three independent experiments ± S.D 

(n=3, One-way ANOVA for single agent treatments as compared to control, Two-way ANOVA 

for combination treatments compared to single treatment with LDN-193189 followed by 

Tukey’s test for multiple comparisons).

B 

ns ns 

BI = 1.35 BI = 1.1 
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A   CTRL              LDN-193189           AZD6244              Combination  

             (DMSO)                 (0.1 µM)        (0.3 µM)           Treatment 
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Figure 3.9:  The combinatorial treatment with LDN-193189 and selumetinib (AZD6244) does 
not affect cellular motility in HP ST88-14(Nf1-/-) cells.  A: Representative analyzed images of 
the cellular wound area of HP ST88-14(Nf1-/-) cells taken at different time points during the course 
of the migration assay. The highlighted blue lines represent the analyzed wound area.  B: The 
percent quantification of the wound area was normalized to the pre-treatment wound area for 
each condition. LDN-193189 (0.01 µM, 0.1 µM) reduces the motility of HP ST88-14 cells in a 
concentration dependent manner respectively (P<0.01, P<0.001). 0.03 µM AZD6244 does not 
affect motility, however 0.3 µM inhibits motility (P<0.05).  The combination treatment does not 
affect migration in HP ST88-14 as compared to single treatment with LDN-193189. BI values 
represent an antagonistic effect of drug combinations on motility. Data presented are the average 
of quantification of the wound areas of at least three independent experiments ± S.D (n=3, One-
way ANOVA for single agent treatments as compared to control, Two-way ANOVA for 
combination treatments compared to single treatment with LDN-193189 followed by Tukey’s test 
for multiple comparisons).  
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A   CTRL              LDN-193189           AZD6244              Combination  
             (DMSO)                 (0.1 µM)        (0.3 µM)           Treatment 

 

 

Pre-treatment 

 

 

24 hrs  

Post-treatment 

 

 

    

      

Figure 3.10:  The combinatorial treatment with LDN-193189 and selumetinib (AZD6244) 

does not affect cellular motility in HP T265(Nf1-/-) cells.  A: Representative of the analyzed 

cellular wound area of HP T265(Nf1-/-) cells taken at different time points during the course of the 

migration assay. The highlighted blue lines represent the analyzed wound area. Wound healing 

assay for HP T265 cells was terminated at 24 hours post-treatment because the wound area of 

the vehicle treatment condition had almost closed.  B: The percent quantification of the wound 

area was normalized to the pre-treatment wound area for each condition.  LDN-193189 (0.01 µM, 

0.1 µM) reduces the motility of HP T265 cells (P<0.0001).  Only the high concentration of 

AZD6244 at 0.3 µM affects motility in the HP T265 cells (P<0.05).  The addition of AZD6244 to 

LDN-193189 in combination treatment does not affect the migratory potential of HP T265 cells as 

shown by insignificant differences in percent wound closure.  BI values represent an antagonistic 

effect of drug combinations on motility.  Data presented are the average of quantification of the 

wound areas of at least three independent experiments ± S.D (n=3, One-way ANOVA for single 

agent treatments as compared to control, Two-way ANOVA for combination treatments compared 

to single treatment with LDN-193189 followed by Tukey’s test for multiple comparisons).  
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3.3.4.2  Combinatorial treatment with LDN-193189 and selumetinib does not affect 

cellular invasion as compared to single treatment with LDN-193189 

The effect of BMP2 and MEK1/2 signaling pathways on the invasive properties of 

MPNST cells was measured by a basement membrane invasion assay.  The invasion 

assay was performed in 96-well plates, the upper chamber of which was coated with 

extracellular matrix (ECM) gel and the cells that digested and invaded through the ECM 

were quantified by a fluorescence plate reader.  FBS was used at 10% in media as the 

chemoattractant in the bottom chamber.  Fluorescence readings of duplicate wells without 

any chemoattractant per cell line were subtracted from all experimental conditions.  Next, 

wells with variable treatments were normalized to vehicle-controls of the respective 

treatment.  To certify that the effects on invasion by LDN-193189 are specific to BMP2, 

recombinant BMP2 protein with or without LDN-193189 was added to the serum free 

media of the suspended cells.  The effects of LDN-193189 and selumetinib on cell 

invasion of MPNST cells were assessed by single doses and combination doses of these 

agents.   

The invasive capability of the tested MPNST cell lines is significantly increased by 

200 ng/ml BMP2 stimulation, and the addition of LDN-193189 completely blocks the 

effects induced by BMP2 on MPNST cell invasion [Fig. 3.11].  Both LP and HP Nf1(-/-) 

cells responded to LDN-193189 treatment with a significant decrease in invasion [Fig 

3.12(A) and (B)].  As seen in the migration analyses, single treatment with 0.3 µM 

selumetinib significantly affects invasion of the LP MPNST cells, however this effect is not 

as pronounced as that of LDN-193189.  Upon combination treatment with LDN-193189 

and selumetinib, the invasive capability of both LP ST88-14(Nf1-/-) and LP T265(Nf1-/-) 
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cell lines is reduced, however the effect is statistically insignificant [Fig. 3.12(A), Fig. 

3.12(B)].  The combinatorial effect on invasion of both the drugs in the LP MPNST cells 

trends from a weak synergistic effect to an additive effect.  In the HP ST88-14(Nf1-/-) and 

HP T265(Nf1-/-), LDN-193189 significantly inhibits invasion, whereas addition of 

selumetinib has no effect on the invasive capability as compared to treatment with LDN-

193189 alone [Fig. 3.12(C), 3.12(D)].   
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Figure 3.11:  LDN-193189 rescues the effects of BMP2 on cellular invasion in 

MPNST cell lines.  Graphical representations of the quantified fluorescence of the cells 

that invaded through the ECM, normalized to invasive activity without any 

chemoattractant and the vehicle control.  LDN-193189 inhibits cellular invasion as 

compared to the vehicle treated control in LP and HP Nf1(-/-) MPNST cells.  Addition of 

200ng/mL BMP2 promoted invasion in these cells (P<0.01), which is blocked by the 

addition of LDN-193189 in all the tested MPNST cells.  Cells were stained with 

CyQuant/GR dye and the number of invaded cells was quantified by a fluorescence plate 

reader.  Data presented are mean average of three independent experiments ± S.D with 

the corresponding P-values (n=3, One-way ANOVA followed by Tukey’s test for multiple 

comparisons). 
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Figure 3.12:  The effects of combination treatment with LDN-193189 and 

selumetinib (AZD6244) on the invasion of Nf1(-/-) MPNST cells.  Graphical 

representations of the quantified fluorescence of the cells that invaded through the ECM, 

normalized to invasive activity without any chemoattractant and the vehicle control.  A 

and B:  The percentage of low passage cells invading through the ECM using LDN-

193189 and selumetinib.  The invasive ability of LP cells is greatly reduced by LDN-

193189 (0.01 µM, 0.1 µM), whereas selumetinib only affects cellular invasion at 0.3 µM.  

The combinatorial treatment does not result in an enhancement of the inhibitory effect of 

LDN-193189 on invasion.  Based on the BI model, the therapeutic interaction of the 

combination treatment on invasion is weakly synergistic.  C and D:  The percentage of 

high passage cells invading through the ECM using LDN-193189 and selumetinib.  The 

invasive ability of HP cells is greatly reduced by LDN-193189 (0.01 µM, 0.1 µM), whereas 

selumetinib only affects cellular invasion at 0.3 µM.  BI values indicate a weakly 

synergistic to an additive interaction of the combination treatment on invasion.  Data 

presented are the mean average of three independent experiments ± S.D. with 

appropriate P-values shown on the graph, (n=3, One-way ANOVA for single agent 

treatments as compared to the controls followed by Tukey’s test for multiple comparisons, 

Two-way ANOVA for combination treatments as compared to single agent treatments 

with LDN-193189, followed by Tukey’s test for multiple comparisons). 
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3.4  Conclusions 

The data presented in this chapter have established the functional significance of 

targeting BMP2 in MPNST cells.  Inhibition of BMP2 by LDN-193189, not only decreases 

cell migration and invasion but also cell viability in MPNST cell lines.  Inhibition of cell 

viability by LDN-193189 is an off-target effect in the MPNST cells, given that the cell 

viability GI50s are at least 10-fold higher than the biochemically effective dose required to 

inhibit SMAD1/5/8 signaling.  Interestingly, an independent study of the effects of LDN-

193189 on viability of three pancreatic cancer cell lines corroborates our results as LDN-

193189 decreases viability of pancreatic cancer cell lines within the concentration ranges 

used in our MTT experiments (Voorneveld et al. 2013).  These off-target effects of LDN-

193189 may be modulated by targeting of receptors or kinases other than BMP Type I 

receptors.  In fact, a study of kinase specificity of LDN-193189 determined that at 1.0 µM 

concentration (within cell viability GI50 range in MPNST cells), LDN-193189 affects 24 

kinases notably RIPK2, GCK, FGF-R1, etc, independent of its effects on the 

phosphorylation of SMAD1/5/8 complex (Vogt et al. 2011).  Kinases involved in the MAPK 

pathway were unaffected by 1.0 µM LDN-193189 in the same study, and results from our 

western blots conclude that treatment with up to 1.0 µM LDN-193189 does not affect 

MEK1/2 in MPNST cell lines.  Conclusively, LDN-193189 and selumetinib via off-target 

effects, synergize to decrease cellular viability in various MPNST cell lines.  We cannot 

speculate on the mode of decrease in cellular viability at this time as inhibition of viability 

by apoptosis, necrosis, or cytostatic effects cannot be distinguished by the MTT assay 

employed in this study.   

Given that BMP2-SMAD1/5/8 pathway is involved in cellular migration and 
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invasion, inhibition of these malignant characteristics by LDN-193189 in MPNST cells 

was expected.  Results presented in this chapter corroborate the decrease in motility and 

invasiveness by LDN-193189 in MPNST cells previously tested in the HP Nf1(-/-) MPNST 

cells by our lab (Sun et al. 2013).  However, we did not expect changes in the migratory 

and invasive potential of the tested cell lines upon treatment with selumetinib.  

Selumetinib is a specific inhibitor of MEK1/2 signaling that is primarily involved in the 

regulation of cell viability, growth and proliferation.  Results from the in vitro migration and 

invasion studies indicate that selumetinib, in addition to suppressing the growth of 

MPNSTs, may also provide a significant benefit by inhibiting the invasiveness of such 

tumors.  However, the combination treatment with both the candidate agents does not 

result in a significant change in the motility and invasiveness of MPNST cell lines as 

compared to single treatment with LDN-193189.  In fact, the combinatorial effect on 

migration is antagonistic in nature.  Interestingly, even though the combination treatment 

does not significantly affect invasion of MPNST cells as compared to treatment with LDN-

193189 alone, the nature of the combinatorial interaction is weakly synergistic and 

additive.  This is because the BI model takes into account the effects of single treatment 

with both the candidate agents, whereas for statistical analyses combinatorial treatment 

was only compared to single treatment with LDN-193189.  Accordingly, in comparing the 

effects of combination treatment versus selumetinib alone, the combination significantly 

decreases invasion (P<0.01) in all the tested MPNST cells.  However, the purpose of 

these experiments was to assess the feasibility of combination treatment versus single 

treatment with LDN-193189.  Therefore, due to insignificant differences between 

combination treatments and single treatment with LDN-193189, the addition of 
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selumetinib to LDN-193189 does not affect cellular migration and invasion of MPNST 

cells. 
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 CHAPTER IV:  Mechanistic studies of BMP2 regulation by NF1 in MPNSTs 

4.1  Summary 

The importance of targeting the BMP2-SMAD1/5/8 signaling pathway in MPNSTs 

is highlighted by the reversal of invasiveness and migration of MPNST cells as presented 

in Chapter III.  Even though small molecule inhibitors such as LDN-193189 are effective 

at inhibiting BMP2-SMAD1/5/8 signaling, the potential off-target effects of protein 

targeting molecules limit the efficacy of pharmacological inhibition.  The unintended 

inhibition of receptors/kinases other than the targeted protein may be harmless or toxic 

depending on the affected cells and the signaling pathways involved.  Gene therapy 

provides us with an alternative methodology to pharmacological inhibition, in which the 

specificity of targeting the gene of interest minimizes off-target effects.  Our goal in this 

chapter is to identify a genetic target of increased Bmp2 expression by Nf1 deficiency in 

MPNSTs; for which, an understanding of the regulatory mechanisms by which NF1 

deficiency results in activation of BMP2-SMAD1/5/8 pathway, is warranted.   

To understand the molecular mechanisms underlying Bmp2 expression patterns 

in MPNSTs, it is important to identify the transcriptional regulatory elements associated 

with Bmp2 upon down-regulation of Nf1.  Data presented in this chapter identified 

regulatory elements that control Bmp2 expression in MPNSTs, by transcriptional and 

post-transcriptional analyses of Bmp2 in Nf1(+/-) and Nf1 knockdown conditions.  Multiple 

levels of genetic regulation of Bmp2 by Nf1 were explored via Bmp2 promoter analysis, 

determination of mRNA half-life, and studies of the Bmp2 3’UTR.  These mechanism-

based studies enabled the identification of genetic targets of Bmp2 up-regulation that can 

be targeted to reduce the migration and invasion of MPNSTs.  
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4.2  Materials and Methods 

4.2.1  Construction of plasmids 

For the Bmp2 promoter assay, eight fragments of the human Bmp2 promoter 

including the distal and proximal TSSs spanning 1786 nucleotides were cloned into the 

SacI and XhoI restriction sites of the pGL3 luciferase promoter vector (Promega, 

Madison, WI, USA).  Cloning was performed using the InFusion® HD cloning kit 

(Clontech, Mountainview, CA, USA).  To investigate the human Bmp2 3’UTR, full length 

human Bmp2 3’UTR was isolated using standard PCR from CRL-2522 cells.  The isolated 

3’UTR fragments were cloned into the DraI and XbaI restriction sites of the pmiRGLO 

luciferase reporter expression constructs (Promega, Madison, WI, USA).  InFusion® HD 

cloning system was used for cloning the 3’UTR fragment placed between the luciferase 

gene and the polyadenylation site of the pmiRglo vector.  All constructs were analyzed by 

restriction mapping and DNA sequencing. 

4.2.2  Promoter assays and transient transfections 

Promoter reporter experiments were performed in STS26T-V(Nf1+/-), and STS26T-

Nf1 KD.  Cells were seeded on 96-well plates, and were transiently transfected with the 

prepared luciferase vectors and the control pGL3 promoter vector (Promega, Madison, 

WI, USA).  DNA transfection was carried out using Xtremegene 9 (Roche life sciences, 

Indianapolis, IN, USA).  For each well, 0.05 µg of the luciferase vector was mixed with 

0.02ng of pRL–SV40 renilla luciferase control expression vector (Promega, Madison, WI, 

USA).  The DNA concentration for transfection was optimized by titration prior to the 

actual experiments.  The mixture was then added to 0.15 µl of the transfection reagent, 

in 5 µl of OptiMem reduced serum media (Life Technologies, Grand Island, NY, USA).  
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The mixture was incubated for 30 min at room temperature. The reagent mixture was 

combined with 100 µl of the complete culture medium, and subsequently added to the 

washed cell monolayer in each well.  The transfected cells were cultured for 36-48 hours 

and then lysed in 25 µl of the reporter lysis buffer per well (Promega, Madison, WI, USA).  

Twenty microliters of lysate was transferred to opaque white polystyrene 96-well plates 

(Sigma-Aldrich, St. Louis, MO, USA).  Luciferase activity was assayed on GloMax® 96 

Microplate Luminometer using a Dual-Glo luciferase assay system (Promega, Madison, 

WI, USA).  Each condition had 8 replicates and all transfection experiments were 

repeated a minimum of 3 times.   

4.2.3  Bmp2 3’UTR analysis and transient transfections 

Analysis of the human Bmp2 3’UTR was performed on the STS26T-V(Nf1+/-), 

STS26T-Nf1 KD, Cond KD#1 (+/- dox), Cond KD#2 (+/- dox), and Cond KD#3 (+/- 

doxycycline) cells.  For a detailed explanation of the conditional KD cell lines, refer to 

Chapter II.  Cells were plated on 96-well plates, and were transiently transfected with the 

prepared luciferase vectors and the control pmirGLO vector (Promega, Madison, WI, 

USA).  DNA transfection was carried out using Xtremegene 9 (Roche life sciences, 

Indianapolis, IN, USA).  For each well, 0.05 µg of the luciferase vector was mixed with 

0.15µl of the transfection reagent, in 5 µl of OptiMem reduced serum media (Life 

Technologies, Grand Island, NY, USA).  The mixture was incubated for 30 min at room 

temperature. The reagent mixture was combined with 100 µl of the complete culture 

medium, and subsequently added to the washed cell monolayer in each well.  Renilla 

luciferase vector was not added in these experiments as the pmirGLO vector contains an 

internal renilla (hRluc-neo fusion) expression construct.  The transfected cells were 
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cultured for 24-36 hours and then lysed in 25 µl of the reporter lysis buffer per well 

(Promega, Madison, WI, USA).  Twenty microliters of each lysate was transferred to 

opaque white polystyrene 96-well plates (Sigma-Aldrich, St. Louis, MO, USA).  Luciferase 

activity was assayed on GloMax® 96 Microplate Luminometer using a Dual-Glo luciferase 

assay system (Promega, Madison, WI. USA).  Each condition had 8 replicates and all 

transfection experiments were repeated a minimum of 3 times.   

4.2.4  RNA extraction and quantitative real time PCR 

RNA was extracted from 10 mm plates of 70-85% confluent cells using the RNeasy 

Mini Kit (#74106, Qiagen, Valencia, CA, USA).  Three batches of total RNA (2.0 µg) for 

each cell line were reverse transcribed by SuperScript® II First-Strand Synthesis System 

(Invitrogen, Waltham, MA, USA).  Q-RT-PCR was performed using Power SYBR Green 

MasterMix (Applied Biosystems, Carlsbad, CA, USA) and analyzed on the ABI 5700 

Sequence Detection System (Applied Biosystems, Carlsbad, CA, USA).  Primers for each 

gene analyzed are listed in Table 4.1.  For mRNA half-life experiments, 18S was used as 

the reference gene due to its prolonged half-life and stability.  The relative fold change 

was calculated using the CT method as follows: 2-ΔΔCT, where, ΔΔCT = (CT Bmp2 - CT18S) 

experimental time - (CT Bmp2 - CT18S) 0 time point.  Statistical significance was determined 

through student’s t-test and a p-value of less than 0.05 was considered significant. 

Table 3:  Primer sequences used to determine Bmp2 half-life by qRT-PCR 

Gene Forward Reverse 

Bmp2 GACACTGAGACGCTGTTCC CCATGGTCGACCTTTAGG 

18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 
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4.3  Results 

 Transcriptional regulation is a dynamic web of tightly controlled processes, which 

spatially and temporally dictate gene expression.  Most notably, the expression of a given 

gene is regulated by initiation of transcription via gene-specific promoters, pre-mRNA 

processing, and mRNA stability.  To identify the mechanism of increased Bmp2 transcript 

levels by down-regulation of NF1, we investigated the transcriptional regulation of Bmp2 

by the initiation of transcription through Bmp2 promoter analysis, and post-transcriptional 

regulation by Bmp2 mRNA stability and 3’UTR activity upon knockdown of Nf1 in 

MPNSTs.  The experiments presented in this chapter were performed in two independent 

Nf1 knockdown cell models detailed in Chapter II.  Comparison of the mechanistic data 

between the stable knockdown of Nf1 and the inducible Nf1 knockdown system serves to 

minimize cell line or knockdown vector-specific variations.  

4.3.1  NF1 does not regulate Bmp2 promoter activity in MPNST cells  

The promoter region of a gene is located in the distal 5’ end of a given gene, which 

is composed of specific sequences of regulatory elements that control the initiation of 

transcription of that gene.  The combinatorial input of various elements within the 

promoter region such as TSSs, TF-binding sites, and interaction of cis- and trans-

regulatory elements i.e. enhancers or repressors, determine the steady-state levels of 

transcription of a given gene (Maston et al. 2006).  Bmp2 is regulated by highly 

guanine/cytosine (GC)-rich distal and proximal promoter regions (Jiang et al. 2010), with 

greater activity reported in the proximal promoter TSS (Helvering et al. 2000; Ghosh-

Choudhury et al. 2001).  The GC-rich promoter regions of Bmp2 are characteristic of 

transcriptionally repressed genes.  Thereby, Bmp2 transcription requires a balancing of 
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activating factors with the repressive factors to initiate Bmp2 transcription (Jiang et al. 

2010).  To understand the regulatory elements governing the activation of Bmp2 by Nf1, 

we conducted an analysis of the promoter activity of Bmp2 upon Nf1 knockdown. 

Based on published human Bmp2 promoter sequences (Helvering et al. 2000; 

Jiang et al. 2010), eight promoter constructs spanning ~1.8 kb of the Bmp2 gene 

containing the distal and proximal promoter TSSs were cloned into a pGL3 promoter 

luciferase reporter vector [Fig. 4.1(A) and 4.1(B)].  These vectors were transiently 

transfected into the STS26T-V(Nf1+/-) and STS26T-Nf1 KD cells in which the intensity of 

the luciferase signal is proportional to the activity of the Bmp2 promoter regions.  Analysis 

of the luciferase activity comparing the Bmp2 promoter activity in the STS26T-V(Nf1+/-) 

and STS26T-Nf1 KD cells did not show any significant changes in the vector control and 

Nf1 KD cells [Fig. 4.1(C)].  The full-length promoter construct (-1000 to +786 nt) shows 

the least luciferase activity, whereas the region spanning (+494 to +675 nt) has the 

highest luciferase activity.  Therefore, 181 nucleotides of the promoter region between 

+494 and +675 consist of activating Bmp2 elements in the sporadic MPNST cell line.  Due 

to the inability to find any difference in Bmp2 promoter activity upon Nf1 knockdown 

between the STS26T-V(Nf1+/-), STS26T-Nf1 KD, I concluded that the Bmp2 promoter was 

not the region of the genome regulating Nf1 regulation of BMP2 expression in MPNSTs. 
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Figure 4.1:  NF1 does not regulate activity of the Bmp2 promoter in MPNSTs.  A: 

The pGL3-promoter luciferase reporter vector construct used for cloning fragments of the 

Bmp2 promoter.  B: Schematic of the Bmp2 promoter fragments cloned upstream of the 

luciferase gene in the promoter vector.  C: Representative analysis of the luciferase 

activity, normalized to renilla in the STS26T-V(Nf1+/-) and STS26T-Nf1 KD cells shows no 

significant change in activity of the Bmp2 promoter upon Nf1 knockdown conditions. 

Paired t-test, n=8, ns. Data presented are mean of three independent experiments with 

average of eight replicates per condition ± S.D. 
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4.3.2  The post-transcriptional regulation of Bmp2 by NF1 

Because I did not find any changes in the activity of Bmp2 promoter based on NF1 

status, I investigated the post-transcriptional regulation of Bmp2 upon knockdown of Nf1.  

There are multiple levels of post transcriptional regulatory mechanisms such as mRNA 

processing, splicing, polyadenylation, editing, transport, and stability (Day & Tuite 1998).  

Among which, the expression of 5-10% of human genes is controlled by mRNA stability 

(Bolognani & Perrone-Bizzozero 2008).  Analysis of the post-transcriptional regulation of 

Bmp2 was conducted by determining the differences in the rate of Bmp2 mRNA turnover, 

followed by analysis of the Bmp2 3’UTR between Nf1(+/-) and Nf1 knockdown conditions.   

4.3.2.1  NF1 regulates Bmp2 mRNA stability 

Stability of a given mRNA is a major determinant of its expression.  Regulation of 

mRNA turnover controls the abundance of cellular transcripts, hence the levels of protein 

expression (Wilusz et al. 2001).  Each mRNA has an intrinsic half-life, however 

intracellular and extracellular stimuli can modulate the half-life of a given mRNA (Chen et 

al. 2008).  In vitro analyses of Bmp2 mRNA decay rates has shown that half-life of Bmp2 

mRNA correlate with the endogenous mRNA levels of Bmp2 in human, mouse, and 

zebrafish cells (Fritz et al. 2004). 

To investigate the changes in the rate of Bmp2 mRNA turnover between Nf1(+/-) 

and Nf1 knockdown conditions, I determined the half-life of Bmp2 mRNA under both 

conditions.  Determination of the Bmp2 mRNA half-life was performed by using 

actinomycin D to inhibit global transcription within the cells, followed by quantification of 

the Bmp2 mRNA levels by qRT-PCR at various time points under the Nf1(+/-) and Nf1 

knockdown conditions.  Actinomycin D is a widely used transcriptional inhibitor that 
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inhibits DNA-dependent RNA synthesis.  Actinomycin D intercalates into single stranded 

DNA (ssDNA) and prevents the annealing of the newly synthesized (-) ssDNA to the 

acceptor RNA, specifically RNA polymerase I (Jeeninga et al. 1998; Sobell 1985), which 

leads to inhibition of transcription.  Cells were treated with actinomycin D (5 µM), after 

which RNA was extracted at intervals of 0, 1, 3, 6, 9, 12 and 24 hours.  qRT-PCR was 

used to determine the expression of Bmp2 at these intervals to determine the mRNA half-

life of Bmp2 over the course of 24 hours.  The 18S ribosomal RNA gene was used as the 

reference gene due to its increased stability and prolonged half-life.  The fold changes in 

Bmp2 transcript levels were normalized to Bmp2 levels at the 0 time point per cell line.  

RNA extracted at the 24 hour time point for each cell line was excluded from data 

analyses due to high Ct values that may skew the final determination of half-lives.  The 

half-lives of the Bmp2 transcripts were calculated by determination of the decay rate 

constant (kdecay) per experiment, which is proportional to the rate of disappearance of the 

mRNA concentration at a given time point.  Fold changes were plotted on a semi-

logarithmic scale, and non-linear regression analysis was used to determine the slope of 

the best-fit line, which represents kdecay.  mRNA half-life (t1/2 ) is then calculated by the 

following equation: t1/2 = ln 2/kdecay  (Chen et al. 2008). 

As shown in Figure 4.2(A) and Table 4, mRNA half-life in the STS26T-Nf1 KD cells 

is almost double, 4.4 hours, as compared to the half-life of STS26T-V(Nf1+/-) cells at 2.3 

hours.  This doubling of Bmp2 mRNA half-life correlates with the steady state Bmp2 

mRNA levels upon Nf1 KD as measured in Fig 2.4, where Bmp2 mRNA levels increase 

almost two-fold in the STS26T-Nf1 KD cells as compared to the STS26T-V(Nf1+/-) cells.   
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To validate the changes in Bmp2 mRNA half-life depending on the status of Nf1, 

three inducible Nf1 knockdown cell lines were used.  This approach provides a tight and 

rapid genetic switch to control levels of NF1 within cells, therefore any resulting changes 

in Bmp2 transcription can be ascertained to changes in the NF1 status within the same 

cell population.  The inducible Nf1 KD clones were treated with doxycycline (2 µg/ml) to 

induce the Nf1 shRNA 18 hours prior to treatment with actinomycin D.  All of the inducible 

Nf1 KD cell lines show a decrease in the degradation of Bmp2 transcript upon treatment 

with actinomycin D [Fig 4.2 (B), (C), and (D)], and a 1.5-2.0 fold increase in Bmp2 mRNA 

half-life upon down-regulation of Nf1.  These increases in Bmp2 half-life upon knockdown 

of Nf1 are comparatively similar to the increases in steady state Bmp2 transcript levels 

under the same conditions, as shown in Fig. 2.8.  For example, the steady state Bmp2 

mRNA levels in the Cond KD#3 increase ~1.8 fold upon induction of the Nf1 shRNA [Fig. 

2.8] and the Bmp2 mRNA half increases by 1.9 fold [Table 4]. 
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Figure 4.2:  The rate of Bmp2 mRNA decay decreases upon NF1 downregulation in 

MPNST cells.  Changes in Bmp2 mRNA levels are plotted on a semi-logarithmic scale 

and non-linear regression analysis is used to draw a straight line through the data points.  

A: Bmp2 transcripts in the STS26-T Nf1 KD cells degrade slower than those in the 

STS26T-V(Nf1+/-) cells upon treatment with actinomycin D. Paired t-test, n=3, P<.05. Data 

presented are mean of three independent experiments ± S.D.  B, C, and D: Induction of 

the Nf1 shRNA by treatment with doxycycline induces an increase in Bmp2 transcripts 

over the course of 12 hours in three independent conditional Nf1 knockdown cells.  Data 

presented are mean of at least three independent experiments ± S.D. 
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t1/2 (hours) 

Cell lines Vector Ctrl 
(Nf1+/-) 

Nf1 KD P-value 

STS26T (Nf1+/-) 2.3 ± 0.2 4.4 ± 0.5 0.02 

Cond KD #1 1.8 ± 0.2 2.9 ± 0.8 0.07 

Cond KD #2 2.4 ± 0.1 4.3 ± 0.4 0.01 

Cond KD #3 2.1 ± 0.3 4.0 ± 0.6 0.03 

 

Table 4:  Comparison of Bmp2 mRNA half-lives between Nf1(+/-) and Nf1 KD cells.  

Mean Bmp2 mRNA half-life in MPNST cells as calculated by the method described in the 

results section (t1/2 = ln2/kdecay).  Upon down-regulation of Nf1 Bmp2 mRNA half-life 

almost doubles in all of the tested cell lines.  The doubling of half-life correlates with 

steady state Bmp2 expression levels per cell line.  t1/2 shown is the average of half-life 

calculations from three independent experiments. 
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4.3.2.2  NF1 regulates Bmp2 3’UTR 

The stability of mRNA is controlled by its 3’-untranslated region (3'-UTR), which 

consists of regulatory sequences that post-transcriptionally influence gene expression.  

Remarkably, regulatory elements within the Bmp2 3’UTR are well-conserved across 

species (Fritz et al. 2004) and more conserved than its coding region (Abrams et al. 2004), 

which is indicative of its important role in the regulation of Bmp2 expression.  The 3’UTRs 

of the human and mouse Bmp2 transcripts are 83% identical over 1,088 nucleotides, and 

high degree of conservation of Bmp2 3’UTR is reported between several mammalian 

orders (Fritz et al. 2004).   

To further explore the regulation of Bmp2 stability upon knockdown of Nf1, I 

assessed the activity of Bmp2 3’UTR under Nf1(+/-) and Nf1 knockdown conditions.  Full-

length human Bmp2 3’UTR (3530 nucleotides) was isolated from normal human 

fibroblasts and cloned into a pmirGLO luciferase reporter vector [Fig. 4.3(A)] between the 

luciferase gene and the polyadenylation site of the vector.  All cell lines were transfected 

with the control vector and the vector containing the Bmp2 3’UTR sequence.  The intensity 

of the luciferase signal is proportional to the activity or stability induced by the Bmp2 

3’UTR.  Luciferase activity for each Nf1-KD cell line is normalized to its control (Nf1+/-).  

Figure 4.3(B) shows that Bmp2 3’UTR activity in the STS26T-Nf1 KD cells is 

approximately 4.5 fold higher in the STS26T-Nf1 KD cells as compared to the vector 

control.  For the inducible Nf1 knockdown cell models, Nf1 shRNA was induced by 

doxycycline (2 µg/ml) 10 hours post-transfection to limit any effects of doxycycline on 

transfection conditions.  All three inducible Nf1 KD cells exhibit increased Bmp2 3’UTR 

activity [Fig. 4.3(C)], with highest relative activity reported in the Cond KD#3 which also 
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has the highest fold change in steady-state expression levels and mRNA half-life.  The 

increase in Bmp2 3’UTR activity in the inducible Nf1 knockdown cells is not as 

pronounced as that of the STS26T-Nf1 KD cells.  The average 1.8-2.4 fold increase in 

Bmp2 3’UTR activity in dox-treated cells, after subtraction of the luciferase signal from 

untreated cells is similar to the steady state Bmp2 mRNA levels and its half-life upon 

knockdown of Nf1.  The increased activity (~4.5 fold) of the Bmp2 3’UTR in the STS26T-

Nf1 KD compared to the STS26T-V(Nf1+/-) cells can be attributed to analysis of the 3’UTR 

activity in two different cell populations.  The inducible knockdown system represents a 

better, more specific model to study the direct effects of NF1 on the Bmp2 3’UTR as 

analysis is conducted within the same cell population. 
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Figure 4.3:  Activity of the Bmp2 3’UTR upon Nf1 down-regulation.  A: Schematic of 

the pmirGLO vector used for testing Bmp2 3’UTR activity.  B: Luciferase activity of the 

Bmp2 3’UTR measured in STS26T-V(Nf1+/-), and STS26T-Nf1 KD cells normalized to 

luciferase activity of the control vector. Paired t-test, n=3, *P<.05, **P<.01. Data presented 

are mean of 3 independent experiments with 8 replicates per condition in each experiment 

± S.D.  C: Luciferase activity of the Bmp2 3’UTR normalized to activity of control vector 

in conditional Nf1 KD cells. All conditional Nf1 KD cells show an increase in the Bmp2 

3’UTR activity upon induction of Nf1 shRNA by doxycycline (2 µg/mL). Paired t-test, n=3, 

**P<.01. Data presented are mean average of 3 independent experiments with 8 

replicates per condition in each experiment ± S.D. 

0 2 4 6 8

Relative luciferase units (RLU)

Relative activity of Bmp2 3'UTR upon 
knockdown of Nf1

STS26T-Nf1 KD

STS26T-V(Nf1+/-)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

Cond. KD #1

Cond. KD #2

Cond. KD #3

Relative luciferase units (RLU) 

Relative activity of Bmp2 3'UTR in conditional Nf1
knockdown cells

Dox-Treated (Nf1 KD) CTRL (Nf1+/-)

*

**
 

A B 

C 

**
 

**
 

**
 



www.manaraa.com

109 

 

 

 

4.4  Conclusions 

 

From the mechanism-based experiments, we concluded that Nf1 regulates Bmp2 

post-transcriptionally via regulation of the Bmp2 3’UTR, which results in an increase in 

the cytoplasmic half-life of Bmp2 mRNA in MPNSTs.  A further investigation into the 

regulatory elements of the Bmp2 3’UTR will reveal the regulatory factors responsible for 

stabilizing Bmp2 mRNA upon Nf1 deficiency.  Thereby, we propose two notable post-

transcriptional mechanisms of mRNA stability, i.e. adenylate-uridylate (AU)-rich elements 

(ARE) and miR-response elements in the 3’UTR, which may be involved in regulation of 

Bmp2 expression in Nf1-null MPNSTs.   

Stability of the mRNA can be modulated by ARE and miR-response elements in 

the 3’UTR (Cheneval et al. 2010).  RNA-binding proteins bind the AU-rich motifs in the 

3’UTR and stabilize or aid in degradation of the transcript.  The importance of ARE sites 

is underscored by studies which have established that loss of ARE-mediated control of a 

given gene leads to severe pathologies such as developmental abnormalities and 

tumorigenesis (Hodson et al. 2010; Ghosh et al. 2009; Hao & Baltimore 2009).  The 3’UTR 

of human Bmp2 is ARE-rich, containing thirteen classical AUUUA pentamer motifs along 

with several non-canonical AU motifs [Fig 4.4(A)].  The heavy presence of ARE sites in 

the Bmp2 3’UTR, which are well-conserved across species, is indicative of the role of this 

region in controlling Bmp2 expression.  Additional inquiry of the Bmp2 3’UTR by localizing 

the specific region of Bmp2 3’UTR that is responsive to changes in the NF1 status will 

identify ARE sites alongside RNA-binding proteins, involved in regulating Bmp2 

expression in Nf1-null MPNSTs. 
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Regulation by microRNAs (miRs) is another possible post-transcriptional 

regulatory mechanism by which Nf1 regulates Bmp2 expression in MPNSTs.  miRs are 

20-24 nucleotides long noncoding RNAs that post-transcriptionally regulate gene 

expression by mRNA degradation and/or translational repression.  More than 50% of 

mammalian RNAs are predicted to be controlled by miR-mediated regulation (Fabian et 

al. 2010).  Although the exact mechanism of post-transcriptional inhibition by miRs is not 

well understood, the proposed model suggests that miRs bind target mRNAs via base-

pairing to miR-response elements in the 3’UTR and induce deadenylation, which results 

in degradation of the transcript (Filipowicz et al. 2008).  The 3’UTR of Bmp2 contains 

many miR response elements with the highly conserved miR sites displayed in Figure 

[4.4(B)].  We studied activities of miR-response elements of miR-17, miR-140, miR-214, 

miR-374, and miR-378 on targeting of the Bmp2 3’UTR upon Nf1 knockdown.  The 

aforementioned miR-response elements were selected on the basis of degree of 

conservation and published literature.  However, due to variable results between 

experimental repeats we could not identify a miR or subset of miRs regulating changes 

in Bmp2 expression upon Nf1 deficiency.  We also studied alternative splicing of Bmp2 

3’UTR between Nf1-KD and Nf1(+/-) conditions.  Analysis of the poly(A) sites in the Bmp2 

3’UTR by PCR of the poly(A)-associated regions in the cDNAs of STS26T-V(Nf1+/-) and 

STS26T-Nf1 KD cells did not reveal any alternative splicing.  

This is the first report of the mRNA half-life regulation by Nf1 in MPNSTs.  

However, the exact mechanism, RNA-binding proteins or miRs, by which Nf1 deficiency 

leads to up-regulation of BMP2 need be investigated.  Many groups have shown the  
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Figure 4.4:  Human Bmp2 3’UTR with associated ARE and miR-response elements.  

A: Schematic of the analysis of the Bmp2 3’UTR by courtesy of AREsite. Colored triangles 

represent ARE sites, with their locations shown in the Bmp2 3’UTR. There are thirteen 

canonical ARE sites (AUUUA) in the Bmp2 3’UTR, nine of which are conserved in mice.  

B: Simplified schematic of the five broadly conserved families of miRs, with miR-response 

elements in the Bmp2 3’UTR. The color key indicates the extent of base complementarity 

of the given miR to the miR-response elements in the Bmp2 3’UTR.  Red color denotes 

7mer-m8, which is an exact match to positions 2-8 of the mature miRNA (the seed + 

position 8). Blue color denotes 7mer-1A which is an exact match to positions 2-7 of the 

mature miRNA (the seed) followed by an 'A'. Diagram is made by computational analysis 

of miR sites in the Bmp2 3’UTR via TargetScan 6.0.    

 

A 
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deregulation of miRs and pertinent effects in NF1 and non-NF1 related MPNSTs 

(Subramanian et al. 2010; Sedani et al. 2012; Masliah-Planchon et al. 2013). 

Overexpression of miR-204 via its effects on the Ras pathway reduces proliferation, 

invasion and migration in the ST88-14(Nf1-/-) and T265(Nf1-/-) cells in vitro, and reduces 

growth and malignancy of the STS26T(Nf1+/-) cells in vivo (Gong et al. 2012).  Inhibition 

of expression of miR-214 and miR-10b in NF1-related MPNSTs decreases cell 

proliferation and migration (Subramanian et al. 2010).  Therefore, additional investigation 

of the RNA-binding proteins and the associated ARE sites of the Bmp2 3’UTR combined 

with a microRNAome profiling of Nf1(+/-) and Nf1-KD cells MPNST cells will not only 

provide a comprehensive view of the mechanism of Bmp2 regulation by NF1, but will also 

aid in identification of a genetic target of enhanced BMP2 signaling promoting migration, 

invasion, and survival of MPNSTs. 
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CHAPTER V:  Discussion 

MPNST is a rare form of cancer that comprises approximately 2% of all sarcomas 

(Ng et al. 2013).  Approximately half of all MPNST cases occur in association with NF1 

disease (King et al. 2000), where the biallelic loss of Nf1 in Schwann cells is thought to 

be responsible for transformation of neurofibromas to MPNSTs (Zhu et al. 2002).  Given 

that neurofibromas affect almost all NF1 patients (Compston 1994b; Huson 1989b) but 

only 8-13% of these patients develop MPNSTs (Anghileri et al. 2006), the molecular path 

from neurofibromas to MPNST formation is unclear.  Mutations in the Nf1 RAS-GRD and 

subsequent hyperactivation of downstream signaling pathways of RAF-MEK1/2-ERK1/2 

and PI3K-AKT-mTOR are necessary but not sufficient to drive the transformation of 

neurofibromas to MPNSTs (Cichowski et al. 1999; Zhu et al. 2002).   

The genomic complexity of MPNSTs, in which multiple signaling pathways 

cooperate to promote tumorigenesis, has limited treatment options for MPNST patients.  

The failure of conventional chemotherapy by doxorubicin and ifosfamide (Zehou et al. 

2013) and anti-RAS agents (Kim et al. 2013) has stimulated interest in rationally 

developed targeted therapy for clinical management of MPNSTs.  Thus far, targeted 

therapies aimed at downstream signaling pathways of RAS have fared poorly in clinical 

trials, although redesigned agents targeting the same pathways are currently under 

investigation (Farid et al. 2014).  To improve clinical outcomes for MPNST patients, a 

comprehensive understanding of the biological events and gene expression changes 

independent of Ras signaling, in the setting of NF1 is imperative. 

The goal of this study was to utilize gene expression profiling followed by molecular 

and biochemical studies, to identify a novel target of Nf1 regulation independent of RAS-
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GRD, understand gene regulation, and therapeutic utility of multiple targeted pathways to 

improve clinical outcomes for NF1-related MPNSTs.  To this end, we have identified 

BMP2-SMAD1/5/8 pathway, independent of the RAS-MEK1/2-ERK1/2 axis (Sun et al. 

2013) to be associated with invasion, migration and metastatic properties of MPNST cell 

lines.  I identified a novel regulatory mechanism of mRNA stabilization by NF1.  Most 

importantly, I developed a combinatorial therapeutic approach that reduces the cellular 

viability of MPNST cells by targeting BMP2 and MEK1/2 with LDN-193189 and 

selumetinib, respectively.    

Anti-tumor interactions of LDN-193189 and selumetinib were evaluated in multiple 

MPNST cell lines including physiologically relevant low passage NF1-null MPNST cells.  

Unsurprisingly, single treatment with LDN-193189 resulted in reversal of migratory and 

invasive properties of MPNST cells regardless of passage number.  The efficacy of 

combinatorial treatment with LDN-193189 and selumetinib on cell viability was enhanced 

in the low passage cells as compared to the high passage cells.  However, combination 

treatment did not result in a significant decrease in cellular migration or invasion of these 

cells.  This can be due to the strong inhibitory effect of LDN-193189 on migration and 

invasion of MPNST cells, therefore addition of selumetinib does not result in a significant 

change in the migratory and invasive potential of these cells.  Decreasing the 

concentration of LDN-193189 in the combinatorial treatments may provide a better 

assessment of the combinatorial effects of these drugs on cellular migration and invasion 

of MPNSTs.  

I found that the combination of LDN-193189 and selumetinib synergistically 

inhibited cell viability in all of the tested MPNST cell lines through possible off-target 
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effects, independent of passage number or NF1 status.  The cell viability GI50 for LDN-

193189 was at least 10-20 times higher than the biochemically relevant concentration 

required to inhibit BMP2-SMAD1/5/8 signaling.  With the demonstrated lack of adverse 

side effects of LDN-193189 in animal studies (Yu et al. 2008), the inhibition of cell viability 

by LDN-193189 at higher doses may provide an additional therapeutic benefit in 

treatment of MPNSTs.  The decrease in viability of MPNST cells was associated with 

increased cleavage of Poly(ADP- ribose) polymerase (PARP), a marker of cell death, 

detected by western blots in combination treatment as compared to single treatments with 

LDN-193189 or selumetinib (data not shown).  The presence of cleaved PARP fragments 

(~89 kDa) is indicative of cytotoxicity induced by these agents.  Nonetheless, we cannot 

delineate the precise mechanism of cytotoxicity (apoptosis, autophagy or necrosis) 

without additional assessment of caspase activity, and/or annexin V staining.  Likewise, 

cytostatic effects of the combinatorial treatment cannot be ruled out as we did not test for 

any markers associated with cytostasis upon treatment of MPNST cells.   

In our pharmacology studies, I also assessed the efficacy of targeting the 

PI3K/AKT/mTOR pathway regulated by RAS in MPNSTs.  Additionally, BMP2-

SMAD1/5/8 pathway has been reported to interact with the PI3K/AKT/mTOR pathway to 

induce invasiveness in cancer subtypes (Kang et al. 2010).  Treatment with a dual 

PI3K/mTOR inhibitor VS-5584 (0.3µM) for 3 hours promoted cell death by presence of 

cleaved PARP fragments in ST88-14(Nf1-/-) cells; however, addition of LDN-193189 

and/or selumetinib to VS-5584 treated cells did not significantly increase cell death (data 

not shown).  These therapeutic studies suggest that targeting of BMP2-SMAD1/5/8 

pathway by LDN-193189 in combination with inhibition of MEK1/2-ERK1/2 signaling by 
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selumetinib provides an effective strategy to reduce the cell viability of MPNSTs, however 

further analysis of the combinatorial interaction of both the agents on migration and 

invasion is warranted.   

To explore the mechanism by which NF1 deficiency leads to increased expression 

of Bmp2, we analyzed the transcriptional regulation of Bmp2 by promoter, 3’UTR, and 

transcript half-life studies.  I identified a post-transcriptional regulatory mechanism by 

which NF1 regulates the 3’UTR of Bmp2.  The 3’UTR of Bmp2 exhibits increased activity 

upon knockdown of Nf1 leading to increased half-life and stability of Bmp2 mRNA.  I 

determined that Bmp2 mRNA half-life in Nf1 heterozygous conditions is approximately 2 

hours, which virtually doubles upon knockdown of Nf1.  mRNAs with short half-lives such 

as Bmp2, have fast induction and repression rates (Bolognani & Perrone-Bizzozero 2008) 

and are known to respond to changes in transcription more rapidly than those with longer 

half-lives (Ross 1995).  Importantly, stabilization of mRNAs with short half-lives can result 

in dramatic changes in gene expression, hence protein levels (Hargrove & Schmidt 1989).  

Accordingly, the increased stability of the Bmp2 mRNA upon Nf1 knockdown may permit 

a prolonged translational window, leading to increases in BMP2 protein levels and its 

functional effects on migration and invasion.  I noticed a strong association between the 

increase in Bmp2 mRNA half-life and steady-state mRNA levels.  These findings agree 

with a previous report where human Bmp2 mRNA decay rate correlates with endogenous 

Bmp2 mRNA levels (Fritz et al. 2004).  The unusually high degree of conservation of the 

Bmp2 3’UTR (Fritz et al. 2004) coupled with the ample presence of ARE sites and miR-

response elements within this region, is suggestive of a strictly regulated region which is 

instrumental in controlling Bmp2 expression levels.  The regulation of transcript stability 
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by NF1 is a novel concept that need be further explored.  Although there is an overall 

down-regulation of genes in MPNST tissue samples as compared to the benign forms of 

neurofibromas (Miller et al. 2009), our gene expression profiling study identified 

overexpression of several candidate genes upon NF1 deficiency such as SOX9, STAG1, 

POU5F1, VEGFC, EDN1, CXCL3, etc.  mRNA stabilization may be the mechanism of 

increased expression of other genes up-regulated by knockdown of Nf1 in MPNST cells.  

Analysis of the transcript half-lives and 3’UTR regions of these up-regulated genes may 

potentially identify common cis- and trans-acting elements regulated by NF1 that can be 

therapeutically targeted in MPNSTs. 

Overall, this study has shown the feasibility of targeting BMP2-SMAD1/5/8 

signaling in combination with MEK1/2-ERK1/2 inhibition in MPNSTs.  Additionally, 

targeting of post-transcriptional regulatory elements involved in regulation of Bmp2 3’UTR 

by NF1 provides an alternative genetic target to precisely inhibit BMP2 expression and 

its functional effects on cell migration and invasion in MPNSTs.  A model diagram of the 

proposed combinatorial targeting approach presented in this study with the goal of 

improving clinical outcomes for MPNST patients is presented in Fig 5.1.   
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Figure 5.1:  Diagram summarizing the proposed combinatorial targeted therapeutic 

approach for treatment of MPNSTs.  NF1 attenuates RAS and associated downstream 

signaling cascades by accelerating hydrolysis of RAS-GTP to RAS-GDP.  NF1 post-

transcriptionally regulates Bmp2 leading to suppression of BMP2-SMAD1/5/8 signaling 

pathway.  NF1 deficiency leads to constitutive activation of RAS-MEK1/2-ERK1/2, and 

BMP2-SMAD1/5/8 signaling pathways, enhancing the tumorigenic properties of 

MPNSTs.  Combinatorial targeting of MEK1/2 by selumetinib (AZD6244) and BMP2 by 

LDN-193189 or inhibition of Bmp2 post-transcriptional regulatory elements reduces the 

increased survival of MPNSTs, however does not affect the migratory and invasive 

characteristics of malignant MPNSTs. 
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Neurofibromatosis type I (NF1)-deficient malignant peripheral nerve sheath tumor 

(MPNST) is an aggressive tumor for which the standard treatment is surgical removal 

with wide margins, often leaving behind cancer cells needing chemotherapy.  RAS-GRD 

is the most widely studied functional target of NF1 implicated in tumorigenesis, however, 

therapeutic interventions targeting RAS activity have met with limited success.  Using 

gene expression profiling, our lab identified BMP2-SMAD1/5/8 signaling pathway as a 

therapeutic target in MPNSTs, independent of the NRAS and MEK1/2 regulation.  The 

overall goal of my research was to validate the significance of BMP2 in MPNSTs in novel 

cellular models, study the combinatorial effects of BMP2 and MEK1/2 inhibition, and use 

the regulation of BMP2 transcriptional control to define mechanism-based rational targets 

of BMP2 signaling, to treat NF1-related tumors.   

Biological aggressiveness of MPNSTs is characterized by its highly motile and 

invasive nature.  I presented a unique approach that targets not only the motility and 

invasive capability but also growth and proliferative potential of MPNSTs, by inhibition of 

BMP2-SMAD1/5/8 and RAS-MEK1/2-ERK1/2 signaling pathways in MPNST cell lines.  
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By using physiologically relevant cell models that simulate MPNST condition in vivo, I 

have shown that combinatorial targeting of BMP2 and MEK1/2 pathways results in 

reversal of malignant features of MPNST cell lines.  Additionally, I have identified a novel 

regulatory mechanism by which NF1 mediates BMP2 transcript stability.  The targeted 

inhibition of the molecular components involved in stability of the Bmp2 3’ UTR by NF1, 

represents an alternative approach of genetic targeting in MPNSTs.  In summary, I have 

presented two independent methodologies of therapeutically targeting BMP2-SMAD1/5/8 

signaling in MPNSTs. 
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